Language Defect in Pediatric Epilepsy

Thesis

Submitted for Fulfillment of Master Degree in Neuropsychiatry

By

Zumurudah Taha Haroon

M.B, B.Ch (Sana'a University)

Under Supervision Of

Prof. Dr. Samia Ashour Mohammed

Professor of Neuropsychiatry, Faculty of Medicine – Ain Shams University

Prof. Dr. Nahed Salah-Eldeen Ahmed

Professor of Neuropsychiatry
Faculty of Medicine – Ain Shams University

Dr. Maha Ali Nada

Lecturer of Neuropsychiatry
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

List of Contents

Title	Page
♦ List of Figures	Ι
♦ List of Tables	II
♦ List of Abbreviations	III
♦ Glossary	VII
♦ Introduction	١
♦ Aim of the Work	٤
♦ Chapter ('): Language development	٥
♦ Chapter (⁷): Functional neuroanatomy of	
Language	١٢
♦ Chapter (^r): Epilepsy	70
♦ Chapter ([‡]): Epilepsy and language	
Disorders	27
Chapter (°): Epileptiform activity and	
language disorders	OV
♦ Chapter (¹): Genetics of language	
impairment in pediatric epilepsy	٧٧
◆ Chapter ([∨]): Evaluating the Child with	
Seizure and language	
Disorder	٨١
♦ Chapter (^): Management of speech and	
language problems in epilepsy	117
◆ Discussion	1 & V
♦ Summary	107
♦ Conclusion	١٦.
♦ Recommendations	171
♦ References	177
Arabic Summary	

List of Figures

Fig.	Title	Page No.
١	Anatomical and cytoarchitectonic details of the left hemisphere.	٨
۲	Language areas in relation to Broadmann's areas.	۱۳
٣	Schematic of the functional anatomy of language processing.	١٤
٤	The correlation between nocturnal epileptiform activity and language impairment.	09
0	The spectrum of nocturnal epileptiform activity and language impairment.	٦.
٦	Recommended algorithm based on seizure types.	101
٧	Recommended algorithm for seizure evaluation.	107

List of Tables

Table No.	Title	Page No.
١	Summary of studies of epilepsy prevalence by country.	۲۹
۲	Classification of common epilepsy syndromes.	٣٦
٣	Summary of cognitive dysfunctions and structural abnormalities reported in the main epilepsy syndromes.	٤٣
٤	Typical age of onset of seizures in metabolic disorders.	۸۲
٥	Simple metabolic investigations for patients with epileptic encephalopathy.	٩٣
٦	Epileptic Syndromes and Inborn Errors of Metabolism.	٩٦
٧	EEG Patterns and Associated Disorders.	٩٨
٨	Metabolic Diseases and Biochemical Abnormalities.	99
٩	Metabolic Disorders and Diagnostic Laboratory Tests.	١
١.	Overview of affected domains by different antiepileptic drugs.	110

List of Abbreviations

AAN American Academy of Neurology **ACGH** Array Comparative Genomic Hybridization **ADHD** Attention Deficit Hyperactivity Disorder Autosomal Dominant Nocturnal Frontal Lobe **ADNFLE Epilepsy** Anti-Epileptic Drugs **AEDs Arcuate Fasciculus AF Autism Spectrum Disorders ASD** Anterior Temporal Lobe ATL Auditory cortex Aud **Brodmann Areas** BA Benign Epilepsy with Centro-Temporal spikes **BECTS Basic Metabolic Panel BMP** Blood-Oxygen-Level-Dependent **BOLD** Complete Blood Count **CBC** Carbamazepine **CBZ** Congenital Disorder of Glycosylation **CDG** Clobazam CLB Central Nervous System **CNS** Copy Number Variants **CNVs** Cerebral Palsy **CP** Cerebrospinal Fluid **CSF** Continuous Spike-Wave of Sleep **CSWS** Continuous Spikes in slow-wave sleep **CSSWS** Computed Tomography CT Developmental Delay DD **Diffusion Tensor Imaging** DTI Electroencephalogram **EEG**

EMA	European Medicines Agency
EPFA	Epileptiform Activities
ESES	Electrical Status Epilepticus during Sleep
ESL	Eslicarbazepine
FBM	Felbamate
FDA	Food Drug Association
FDG	Fluorodeoxyglucose
FLE	Frontal Lobe Epilepsies
fMRI	functional Magnetic Resonance Imaging
FOP	Frontal Operculum
GABA	Gamma-Aminobutyric Acid
GBP	Gabapentin
GTC	Genenralized Tonic Clonic
GTCS	Generalized Tonic–Clonic Seizure
HG	Heschle's Gyrus
ннн	Hyperammonia, Hyperornithinemia, Homocitrullinemia
IBE	International Bureau for Epilepsy
IFG	Inferior Frontal Gyrus
IFOF	Inferior Occipito-Frontal Fasciculus
IFS	Inferior Frontal Sulcus
ILAE	International League Against Epilepsy
ITG	Inferior Temporal Gyrus
IQ	Intelligence Quotient
JME	Juvenile Myoclonic Epilepsy
LCM	Lacosamide
LEV	Levetiracetam
LKS	Landau- Kleffner Syndrome
LP	Lumbar Puncture
LTG	Lamotrigine

MELAS Mitochondrial Encephalomyopathy Lactic

Acidosis and Stroke-like episodes

MERRF Myoclonus Epilepsy with Ragged Red Fibers

MR Mental Retardation

MRS Magnetic Resonance Spectroscopy

MRI Magnetic Resonance Imaging
MSI Magnetic Source Imaging
MSUD Maple Syrup Urine Disease

MTG Middle Temporal Gyrus

NCL Neuronal Ceroid Lipofuscinoses
NFLE Nocturnal Frontal Lobe Epilepsy
NMDA N-Methyl-D-aspartic Acid receptor

receptor

NMRI Nuclear Magnetic Resonance Imaging

NP Neuropsychological

NREM Non Rapid Eye Movement

OXC Oxcarbazepine

PAC Primary Auditary Cortex

PB Phenobarbital

PDH Pyruvate Dehydrogenase Deficiency

PDS Paroxysmal Depolarization Shift
PET Positron Emission tomography

PHT Phenytoin Pre-Motor

PME Progressive Myoclonic Epilepsy

RE Rolandic Epilepsy
REM Rapid Eye Movement

RTG Retigabine RUF Rufinamide

SAA	Serum Amino Acid
SCF	Subcallosal Fasciculus
SDEEG	Sleep-Deprived EEG
SLF	Superior Longitudinal Fasciculus
SLI	Specific Language Impairment
SLP	Speech and Language Pathologist
SMG	Supramarginal Gyrus
SPECT	Single Photon Emission Computed
	Tomography
Spt region	Sylvian parietal temporal region
SSDD	Succinic Semialdehyde Dehydrogenase
	Deficiency
STG	Superior Temporal Gyrus
STS	Superior Temporal Sulcus
TGB	Tiagabine
TLCPSs	Temporal Lobe Complex Partial Seizures
TLEs	Temporal Lobe Epilepsies
TPM	Topiramate
UOA	Urine Organic Acid
VGB	Vigabatrin
VLCFA	Very Long-Chain Fatty Acids
VPA	Valproic acid
WISC	Wechsler Intelligence Scale for Children
ZNS	Zonisamide

Glossary

Angelman syndrome	It is a neuro-genetic disorder characterized by severe intellectual and developmental disability, sleep disturbance, seizures, jerky movements (especially hand-flapping), frequent laughter or smiling, and usually a happy demeanor.
Comb-like rhythm	A unique electroencephalographic pattern (the comb-like rhythm) is described in an infant with neonatal (classic) maple syrup urine disease. This pattern consists of bursts and runs of °-V Hz primarily monophasic negative (mu-like) activity in the central and central-parasagittal regions during wakefulness and sleep with the most abundant bursts occurring during quiet (non-REM) sleep. This pattern appeared during the first Y weeks of life and was absent in the recording obtained ½ days after the initiation of dietary therapy.
Hypomelanosis of Ito	It is a multisystem disorder in which most organs of the body may show anomalies in addition to the skin. The most frequent alterations are found in the musculoskeletal and central nervous systems.
Molybdenum	Molybdenum cofactor deficiency is a rare human disease in which the absence of molybdenum cofactor leads to accumulation of toxic levels of sulphite and neurological damage. Usually this leads to death within months of birth, due to the lack of active sulfite oxidase.
Ontogeny	The development of individual organism.

First of all, I thank "Allah" to whom I relate any success in achieving any work in my life.

I wish to express my gratitude to **Professor Dr. Samia Ashour**, Professor and Head of Neuropsychiatry Department Ain Shams University; to her I owe so much. I am really honored by her kind supervision, full support and care.

I am very grateful to Professor **Dr Nahed Salah Eldeen** Professor of Neurology Ain Shams University, for her great help and kind supervision with very valuable comments and recommendations. She is the role model of 'the Professor'

Especial thanks for **Dr Maha Nada** Lecturer of Neurology Ain Shams University. Who support me by her great ideas in my review, meticulous supervision, and was patient with me.

In this regard, I express the greatest thanks and appreciation to my dear professor in Yemen Professor Abdulrahman Sallam, who is worth noting, he received his higher from this deep-rooted university. He was credited after Allah Almighty to give me the honor to belong to this edifice giant, by his supporting and continued encouragement.

Great thank to all the professors and doctors, whom helped me in my education and training to be at a good level of academy, and this is normal for them because Egypt is always and since time considered as the exporter of science for all peoples.

I do not forget to thank my dear colleagues who eased me the trouble of emigration by their love and support; they have very much thanks and greetings.

Many thanks for **my family** who love me, and pray for me and many great thanks and appreciation to my dear brother Fares who travelled abroad with me to give me his care and support.

Zumurudah Taha Haroon

List of Contents

Title	Page
♦ List of Figures	Ι
♦ List of Tables	II
♦ List of Abbreviations	III
♦ Glossary	VII
♦ Introduction	1
♦ Aim of the Work	4
♦ Chapter (1): Language development	5
• Chapter (2): Functional neuroanatomy of	
Language	12
♦ Chapter (3): Epilepsy	25
♦ Chapter (4): Epilepsy and language	
Disorders	37
♦ Chapter (5): Epileptiform activity and	
language disorders	58
♦ Chapter (6): Genetics of language	
impairment in pediatric epilepsy	77
♦ Chapter (7): Evaluating the Child with	/ /
Seizure and language	
Disorder	81
♦ Chapter (8): Management of speech and	01
language problems in	
epilepsy	112
♦ Discussion	147
♦ Summary	156
♦ Conclusion	160
♦ Recommendations	161
♦ References	162
Arabic Summary	

Language Defect in Pediatric Epilepsy

Essay

Submitted for Fulfillment of Master Degree in Neuropsychiatry

By

Zumurudah Taha Haroon

M.B, B.Ch (Sana'a University)

Under Supervision Of

Prof. Dr. Samia Ashour Mohammad

Professor of Neuropsychiatry, Faculty of Medicine - Ain Shams University

Prof. Dr. Nahed Salah-Eldeen Ahmad

Professor of Neuropsychiatry
Faculty of Medicine – Ain Shams University

Dr. Maha Ali Nada

Lecturer of Neuropsychiatry
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2013

List of Figures

Fig. No.	Title	Page No.
1	Anatomical and cytoarchitectonic details of the left hemisphere.	8
2	Language areas in relation to Broadmann's areas.	13
3	Schematic of the functional anatomy of language processing.	14
4	The correlation between nocturnal epileptiform activity and language impairment.	59
5	The spectrum of nocturnal epileptiform activity and language impairment.	60
6	Recommended algorithm based on seizure types.	151
7	Recommended algorithm for seizure evaluation.	152