Relation between Androgenic Alopecia and Insulin Resistance in Young Men and Women.

Thesis

Submitted for Fulfillment of Master Degree in Dermatology and Venerology

Presented by

Eman Embaby Fawzy

M.B.B.Ch.

Under Supervision of

Dr. Khaled Hassan El-Hoshy

Professor of Dermatology

Faculty of Medicine

Cairo University

Dr. Heba Helmi El-Hadidi

4

Professor of Dermatology

Faculty of Medicine

Cairo University

Dr. Dina Metwally Salama

Lecturer of Dermatology

Faculty of Medicine

Cairo University

Faculty of Medicine

Cairo University

2011

Acknowledgment

First of all I would like to thank **God** who allowed and helped me to accomplish this work and only by his will everything can be achieved.

I wish to express my deepest gratitude and appreciation to **Prof. Dr. Hoda Rashid,** Head of Dermatology Department, Faculty of Medicine, Cairo University for her kindness, sympathy and continuous encouragement.

I would like to express my deepest thanks and everlasting gratitude to **Prof. Dr. Khaled EL-Hoshy,** Professor of Dermatology, Faculty of Medicine,
Cairo University for his constructive advice and continuous encouragement.
I truly appreciate his constant support and guidance.

I would like to convey my profound gratitude and everlasting appreciation to **Prof. Dr. Heba El -Hadidi,** Professor of Dermatology, Faculty of Medicine, Cairo University for guiding me through each step, eminent supervision, valuable advice, endless encouragement throughout this work and unlimited effort for the successful completion of this work.

I would like to express my sincere appreciation and endless gratitude to **Dr. Dina Metwally,** Lecturer of Dermatology, Faculty of Medicine, Cairo University for her valuable contributions, endless support and help, continuous guidance and endless encouragement throughout this work.

My deepest appreciation and inexpressible gratitude to my family for never ending support and care.

ABSTRACT

The condition in which normal amounts of <u>insulin</u> are inadequate to produce a normal <u>insulin response</u> from <u>fat</u>, <u>muscle</u> and <u>liver</u>. It is believed to be origin of metabolic syndrome and type II diabetes.

Aim of work is to identify relation between IR in patients with AGA compared to a control group.

KEY WORDES

Relation

Alopecia

Resistance

CONTENTS

Contents

	Page No.
• List of Abbreviations	i
• List of Tables	iii
• List of Figures	v
• Review of Literature	••••••
- Hair	1
- Androgens	38
- Androgenic Alopecia	52
-Insulin	84
-Relation between Androgenic Alopecia	and Insulin
Resistance	115
Patients and Methods	117
• Results	122
• Discussion	159
• Conclusion	
• Summary	166
• References	169
Arabic Summary	

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

1,25 /**OH/D3** 1,25-Dihydroxyvitamin D3

AGA Androgenic alopecia

bFGF Basic fibroblast growth factor

BMI Body Mass Index

DHEA Dehydroepiandrosterone

DHEAS Dehydroepiandrosterone sulfate

DHT Dihydrotestosterone

EGF Epidermal growth factor

GLUT4 Type 4 glucose receptors

GTT Glucose tolerance test

HDL High density lipoprotein

HOMA- IR Homeostatic Model Assessment

HREs Hormone response elements

IGF Insulin –like growth factor

IGFBPs Insulin –like growth factor-binding proteins

IKK-β Inhibitor of nuclear factor kappa-b kinase subunit beta

IL-1α Interleukin 1 - α

IR Insulin resistance

LIST OF ABBREVIATIONS

IS Insulin sensitivity

KGF Keratinocyte growth factor

LMNA Lamin A/C (lamin family of proteins)

MCP-1 Chemokine monocyte chemotactic protein -1

Mg Magnesuim

MPB Male pattern baldness

NAFLD Nonalcoholic fatty liver disease

PCOS Polycystic ovarian syndrome

PDGF Platelet-derived growth factor

PG Prostaglandin

PTH Parathormone hormone

QUICKI Quantitative Insulin Sensitivity Check Index

SH Sub-clinical cushing's syndrome

SHBG Sex hormone binding globulin

sLDL Small low density lipoprotein

SULT2A1 Sulfotransferase

T Testosterone

TGFF-β Transforming growth factor beta

TNF- α Tumor necrosis factor – alpha

VEGF Vascular endothelial growth factor

LIST OF TABLES

LIST OF TABLES

Number	Title	Page
Table 1	Hair follicle growth rates by age and body region	32
Table 2	Categories of BMI	119
Table 3	Clinical data obtained from 18 male patients with	128
	androgenic alopecia	
Table 4	Clinical data obtained from 12 female cases with	129
	androgenic alopecia	
Table 5	Clinical data obtained from 12 male controls	130
Table 6	Clinical data obtained from 8 female controls	131
Table 7	7 Female patients with P.C.O.S	
Table 8	Results of insulin resistance in 18 male patients	135
	with androgenic alopecia	
Table 9	Results of insulin resistance in 12 male controls	138
Table 10	Comparison between results of insulin resistance	138
	in male patients and controls	
Table 11	Results of insulin resistance in 12 female patients	139
	controls	

LIST OF TABLES

Number	Title	Page
Table 13	Results of insulin resistance in 7 female patients	142
	with P.C.O.S	
Table 14	Comparison between results of insulin resistance	142
	in 7 female patients with P.C.O.S and controls	
Table 15	Relation between insulin resistance and grades of	145
	androgenic alopecia in 18 male patients	
Table 16	Relation between insulin resistance and grades of	146
	androgenic alopecia in 12 female patients	
Table 17	Relation between insulin resistance and grades of	147
	androgenic alopecia in 7 female patients with	
	P.C.O.S	

LIST OF FIGURES

LIST OF FIGURES

Number	Title	Page
Figure 1	Hair grows in cycles of various phases	2
Figure 2	A resting hair follicle returning from resting telogen to	4
	growing anagen	
Figure 3	Regression of a mature anagen hair follicle	6
Figure 4	Anatomy of hair	9
Figure 5	Anagen hair	11
Figure 6	The layers in a hair follicle from the outside (left) to	12
	the center (right)	
Figure 7	The layers in a hair follicle from the outside (left) to	13
	the center (right)	
Figure 8	Outer root sheath	17
Figure 9	Inner root sheath	19
Figure 10	Hair cuticle	20
Figure 11	Hair cortex	21
Figure 12	Hair medulla	22
Figure 13	The bulb region of a hair follicle	23
Figure 14	The dermal papilla	24

LIST OF FIGURES

Number	Title	Page
Figure 15	Catagen hair at the beginning	26
Figure 16	Catagen hair at the end	26
Figure 17	Tolegen hair	27
Figure 18	2D structure of testosterone	43
Figure 19	Structural diagram of dihydrotestosterone	48
Figure 20	The major difference between testosterone and	49
	dihydrotestosterone	
Figure 21	The general tissue distribution of type I and type II	50
	5-alpha reductase	
Figure 22	The Norwood scale for diagnosis of androgenetic	59
	alopecia in men	
Figure 23	The Savin scale for diagnosis of androgenetic	62
	alopecia in women	
Figure 24	Transfer and cloning of insulin gene	85
Figure 25	Insulin structure	87
Figure 26	Insulin receptors	88
Figure 27	BMI of 18 male patients and 12 male controls	134
Figure 28	BMI of 12 female patients and 8 female controls	135
Figure 29	Relation between insulin resistance and grades of	145
	androgenic alopecia in 18 male patients	

LIST OF FIGURES

Number	Title	Page
Figure 30	Relation between insulin resistance and grades	143
	of androgenic alopecia in 12 female patients	
Figure 31	Relation between insulin resistance and grades	144
	of androgenic alopecia in 7 female with PCOS	
Figure 32	Case no. (1) (male patient)	154
Figure 33	Case no. (6) (male patient)	154
Figure 34	Case no. (9) (male patient)	155
Figure 35	Case no. (11) (male patient)	155
Figure 36	Case no. (17) (male patient)	156
Figure 37	Case no. (18) (male patient)	156
Figure 38	Case no. (1) (female patient)	157
Figure 39	Case no. (4) (female patient)	157
Figure 40	Case no. (5) (female patient)	15 8
Figure 41	Case no. (8) (female patient)	158
Figure 42	Case no. (9) (female patient)	159
Figure 43	Case no. (10) (female patient)	159
Figure 4	Case no. (11) (female patient)	160
Figure 45	Case no. (11) showing hirsutism	161
Figure 46	Case no. (12) (female patient)	162
Figure 47	Case no. (12) showing normal medline	163

<u>Hair</u>

Introduction:

Hair is much more complicated than it appears. It helps transmit sensory information and creates gender identity. Hair is important to the appearance of men and women. There is hair on all the major visible surfaces of the body .A developing fetus has all of it's hair follicles formed by week 22. At this time there are 5 million follicles on the body. One million of those are on the head, and 100,000 are on the scalp. This is the largest number of follicles we will ever have - follicles are never added during life. As the size of the body increases as we grow older, the density of the hair follicles on the skin decreases. (**Pecararo et al.,1971**)

Hair Biology:

Hair consists 90% of α -helically coiled protein – α -keratin, and about 10% water, which modifies its mechanical properties. α -keratins form long protofibrils of about 100 μ m in length and 3 μ m in width. Many of these protofribrils associate to form one strand of hair, which is covered with cuticle scales. The end of each keratin chain is high in the amino acids proline and cysteine. Adjacent keratin chains are strongly linked by disulfide bonds.(Lee & Barden,1975)

ANDROGENIC ALOPECIA

Hair-follicle cycling:

Hair grows in cycles which are not synchronized in human beings; each hair enters phases of the growth cycle at a different time. Hair grows in cycles of various phases .fig .(1).: anagen is the growth phase; catagen is the involuting or regressing phase; and telogen, the resting or quiescent phase. Normally up to 90% of the hair follicles are in anagen phase while, 10–14% are in telogen and 1–2% in catagen. The cycle's length varies on different parts of the body. For eyebrows, the cycle is completed in around 4 months, while it takes the scalp 3–4 years to finish; this is the reason eyebrow hairs have a much shorter length limit compared to hairs on the head.(Kligman ,1959)

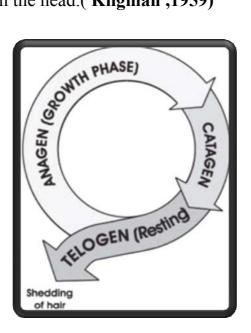


Fig.(1): Hair grows in cycles of various phases. (Saitoh et al., 1970)

ANDROGENIC ALOPECIA

Anagen phase:

Anagen is the active growth phase of hair follicles, extends from the termination of the inactive phase, telogen, to the beginning of the regressing phase, catagen. Anagen further subdivided into proanagen, mesanagen and metanagen. Proanagen marks initiation of growth with RNA and DNA synthesis in a follicle which then quickly progresses through mesanagen to metanagen and maximum follicle length and girth. In this mature state of proliferation and differentiation, the hair follicle consists of a total of eight concentric layers of different cell types and melanogenesis occurs within pigmented hair follicles. The cells in the root of the hair are dividing rapidly, adding to the hair shaft.

So anagen involves the complete re-growth or regeneration of the lower, cycling portion of the follicle, i.e., the hair shaft factory. The epidermal cells surrounding the dermal papilla form the germinal matrix or root of the hair are constantly dividing, and as new cells are formed they push the older ones upwards and eventually out. **fig .(2)**. During this phase the hair grows about 1 cm every 28 days.**((Saitoh et al.,1970)**)

ANDROGENIC ALOPECIA

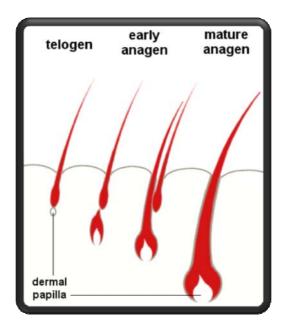


Fig.(2): A resting hair follicle returning from resting telogen to growing anagen. If the old fiber has not already fallen out it is pushed out by the new hair fiber growing underneath.(Paus & Castarelis, 1999)

Catagen phase:

Catagen is a short transitional phase in the hair growth cycle, It signals the end of the active growth of a hair. Catagen is a highly regulated event, in its initiation, development, and termination. The purpose of catagen is to delete the old hair shaft factory and to initiate the stem cells of the bulge and the papilla to set the stage for the formation of a new follicle. There are chemical and structural changes that take place in the