Ultrasound Guided Radiofrequency Ablation Of Uterine Myoma

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Eman Mohamed Hassanin Yahia

M.B.B.CH

Under The Supervision Of

Prof. Dr. Alia Abdallah Elfiky

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

DR. Aya Yassin Ahmed

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

Faculty of Medicine, Ain Shams University 2013

First and foremost, thanks are due to **Allah**, the most beneficent and merciful.

I am so grateful and most appreciative to the efforts of **Prof. Dr. Alia Abdallah Elfiky** Professor of Radio-diagnosis, Faculty of Medicine, Ain shams University. No words can express what I owe her for her endless patience and continuous advice and support.

I wish to express my thanks to DR. Aya Yassin

Lecturer of Radio-diagnosis, Faculty of Medicine, Ain shams University for his kind assistance and guidance.

I am indebted to my family, my friends for their endless and continuous help and support.

Eman Mohamed

TABLE OF CONTENTS

Topics	page	
Introduction and the aim of work	1	
Anatomy of uterus	4	
Pathology and imaging of uterine fibroid	17	
Technique of radiofrequency ablation	43	
Radiofrequency ablation in uterine fibroid	61	
Summery and conclusion	92	
References	94	
الملخص العربي	1	

List of Abbreviations

Abbreviation	Name
СТ	Computed tomography
2D	Two dimension
3D	Three dimension
HSG	Hysterosalpingography
HIFU	High Intensity Focused Ultrasound.
MRg HIHU	Magnetic resonance guided high intensity focused ultrasound
IV	Intravenous
KHz	Kilo Hertz
mA	Milliamper
MPR	Multiplanar Reconstruction
MRg FUS	Magnetic Resonant Guided Focused Ultrasound Surgery.
MRI	Magnetic Resonance imaging.
NO	Number
NSAIDS	Non steroidal anti-inflammatory drugs
KHZ	Kilohertz
Mm	Millimeter
QOL	Quality of life
UFS QOL	Uterine fibroid symptoms and quality of life
RFA	Radiofrequency Ablation
RITA	Radiofrequency interstitial thermal ablation
UAE	Uterine Artery Embolization.

UFE	Uterine Fibroid Embolization
UFS	Uterine fibroid symptom.
US	Ultrasound
W	Watt
RF	Radiofrequency
DWI	Diffusion weighted image
T1 WI	T1 weight image
T2 WI	T2 weight image

LIST OF FIGURES

Figure	e Title	
NO.		
	Chapter 2: Anatomy of the uterus	
Fig. 2:1	Coronal section of the uterus and vagina	5
Fig. 2:2	Variations in uterine position and their terminology	7
Fig. 2:3	Female pelvis: sagittal section showing the pelvic floor	9
Fig.2:4	Axial section showing the supportive ligaments of the uterus	11
Fig. 2:5	An illustration showing the normal anatomy of the uterus and supportive ligaments.	12
Fig. 2:6	An illustration showing the broad ligament	13
Fig. 2:7	Uterus and fallopian tubes: coronal section to show the blood supply and urete relative to uterine artery, cervix and vagina	15
Fig. 2:8	Lymph drainage of the uterus and vagina	16
Chapter 2 : pathology and imaging		
Fig. 3:1	Hysterosalpingography shows normal uterine cavity and fallopian tubes	21
Fig. 3:2	Normal 3D ultrasound	24
Fig. 3:3	Normal 2D &3D Sonohysterography	25
Fig. 3:4	CT section of female pelvis showing uterus and ovaries	27
Fig. 3:5	MRI T1, T2 Sagittal and axial section, shows normal female	30
Fig. 3:6	Plain film showing calcified fibroid	31
Fig. 3:7	Hysterosalpingography show intramural fibroid	33

Fig. 3:8	Hysterosalpingography show submucosal fibroid	33
Fig. 3:9	Ultrasound showing different types of fibroid	
Fig. 3:10	3D Ultrasound show intramural fibroid	
Fig. 3:11	3D Ultrasound show submucosal fibroid	36
Fig. 3:12	2D Sonohysterogram with color Doppler interrogation showed a submucosal fibroid	37
Fig. 3:13	CT pelvis show calcified fibroid	39
Fig. 3:14	Contrast enhanced CT of the pelvis showing large uterine fibroid displacing the right ovary	39
Fig. 3:15	MRI, T2 Sagittal image shows a different type of fibroid uterus	42
	Chapter 3: Technique of RFA	
Fig. 4:1	RF 3000 Boston scientific generator system	45
Fig.4:2	Graph illustrates the electric circuit of the Monopolar RF Ablation	47
Fig. 4:3	Graph illustrates the electric circuit of the Bipolar RF ablation	48
Fig. 4:4	Needle-type RF electrodes	50
Fig. 4:5	Radiofrequency needle : Christmas tree configuration	52
Fig. 4:6	Le Veen needle electrode	52
Fig. 4:7	Various radiofrequency electrodes	53
Fig. 4:8	Device used in trans vaginal radiofrequency myolysis	58
	Chapter 4: RFA in uterine fibroid	
Fig. 5:1	Suprapubic sonogram during Percutaneous approach of RFA showing the location of tip of RFA needle with hooks deployed	66
Fig. 5:2	Suprapubic sonogram during Percutaneous approach of RFA and contrast enhanced ultrasound after the procedure.	67

Fig. 5:3	Ultrasound and contrast enhanced ultrasound	
	before RFA and 6 months after	68
Fig. 5:4	Real time sonography showing tip of RF needle	
	and US after RFA showing heterogonous	69
	hyper echogeneicity.	
Fig. 5:5	Axial MRI & MRI diffusion post Percutaneous	70
	RFA after UAE	70
Fig. 5:6	Sagittal MRI post Percutaneous RFA after UAE	71
Fig. 5:7	(a,b) Digital subtraction angiogram before and	
_	after embolization (c,d) Contrast enhanced	78
	Sagittal MR image obtained before and after	70
	embolization.	
Fig. 5:8	Sagittal contrast enhanced MRI showing	79
	incomplete fibroid ablation after UAE	1)
Fig. 5:9	MRI sagittal T2 images showing fibroid	80
	expulsion after uterine artery embolization.	00
Fig. 5:10	Contrast enhanced MRI axial and sagittal	87
	images before and after HIFU.	07
Fig. 5:11	MRI coronal T1post gadolinium before and	87
	after MRg HIFU	07
Fig. 5:12	MRI axial and sagittal images before HIFU,	
	immediately and three months after the	88
	procedure	

INTRODUCTION & AIM OF THE WORK

Chapter 1 Introduction

Introduction

Uterine fibroids are the most common pelvic tumors in women of reproductive age (*Chavez et al.*, 2001). Over the past decade an increasing demand for uterine-sparing treatment to manage symptomatic uterine myoma has become apparent in woman's health care (*Ghezz et al.*, 2007).

The reason for requesting conservative procedures include the desire to maintain childbearing potential, the wish to avoid major surgery, and, for some, the belief that the uterus plays a role in perceived sexual satisfaction or is the essence of their womanhood (*Nevadunsky et al.*, 2007).

A variety of minimally invasive approaches aimed at preserving the uterus in the face of symptomatic fibroids have been introduced in the clinical arena (*Ghezz et al.*, 2007). Myolysis, an alternative to the conservative surgical treatment of uterine fibroid, was introduced in the late 1980s in Europe (*Donnez et al.*, 2000).

A variety of energy sources have been used in myolysis, including the neodymium: yttrium aluminum garnet (Nd: YAG) laser, bipolar electrode, diathermy, cryoprobe, etc. These conventional myolysis methods are performed under general anesthesia by laparoscopy (*Nisolle et al.*, 2001).

Radiofrequency myolysis has been performed since 2004. (*CHO*, 2008) suggested that radiofrequency ablation may represent a safe, well-tolerated, and effective day-care alternative to conventional surgery for the treatment of uterine myomas (*CHO et al., 2008*).

1

Chapter 1 Introduction

Luo and his colleagues explored the mechanism by which radiofrequency ablation treats uterine leiomyoma by observing the features of lesion caused by RFA to leiomyoma tissue. They concluded that radiofrequency ablation might treat uterine leiomyomas by inducing coagulative necrosis and depressing Estrogen and Progesterone receptors expression (*Luo et al.*, 2007).

Radiofrequency thermal ablation of fibroid uterus can be performed under laparoscopic guidance or ultrasound guidance. Ultrasound guided procedure is advantageous over laproscopic RFA, as it can be performed through a small single skin access under moderate sedation (*Ghezz et al.*, 2007).

Chapter 1 Introduction

Aim of work

To assess the feasibility and efficacy of Ultrasound guided radiofrequency ablation for symptomatic uterine myoma and to evaluate its outcomes in terms of durability of symptom control and level of health-related quality of life.

ANATOMY OF THE UTERUS

ANATOMY OF THE UTERUS

It is a pear-shaped muscular organ lying between the bladder and rectum. It has a fundus, a body and a cervix.

It lies on the posterosuperior surface of the bladder with its cervix projecting into the anterior wall of the upper vagina. The cavity of the uterus is triangular in coronal section, but its anterior and posterior walls are opposed, giving it a slit-like appearance in the sagittal plane. The uterine tubes open into the cornua of the uterus superolaterally. The uterus leads to the vagina via the cervical canal. Just above the cervical canal the uterine cavity narrows to an isthmus. The internal os is at the upper end of the cervical canal and the external os at its lower end (*Cunningham et al., 2010*).

In women of reproductive age the entire uterus measures 6-9 cm in length with the uterine corpus measuring 4-6 cm; the cervix 2.5 - 3.2 cm. The uterus measures approximately 4 cm in thickness and 6 cm in its maximal transverse dimension (*Ellis*, 2006).

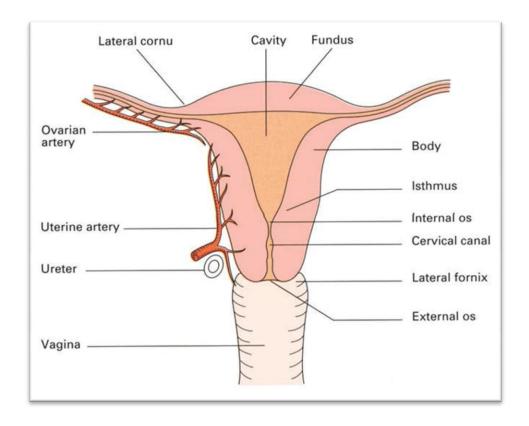


Fig. 2.1: Coronal section of the uterus and vagina (Eliss, 2006)

In children the cervix is twice the size of the uterus. The uterus grows disproportionately until they are of equal size at puberty. In adulthood the uterus is twice the size of the cervix (Cunningham et al., 2010).

The adult uterus is bent forward on itself at about the level of the internal os to form an angle of 170°; this is termed **anteflexion** of **the uterus**. Moreover, the axis of the cervix forms an angle of 90° with the axis of the vagina which correspond to