Relationship between the Functional and Mental Status and Mortality of Elderly Patients Admitted to the Intensive Care Unit

Thesis

Submitted for Partial Fulfillment of M.D degree in Geriatric Medicine

By

Mohammed Abd El-Fattah Amrousy

M.B., B.ch – M.Sc Geriatric Medicine

Under Supervision of

Prof. Ahmed Kamel Mortagy

Professor of Geriatric Medicine Faculty of Medicine, Ain Shams University

Dr. Sara Ahmed Hamza

Assistant Professor of Geriatric Medicine Faculty of Medicine, Ain Shams University

Dr. Manar Mostafa Adel Mamoun

Assistant Professor of Geriatric Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University -2012-

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Ahmed Kamel Mortagy, Professor of Geriatric Medicine for his meticulous supervision, kind guidance, valuable instructions and generous help.

My deepest appreciation goes to Dr. Mohamed Hassanel-Banoby, Professor of Neuropsychiatry and Geriatric Medicine, for his valuable suggestions, advice, efforts and great ideas.

Special thanks are due to Dr. Sara Ahmed Hamza, Assistant Professor of Geriatric Medicine for her sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Manar Mostafa Adel Mamoun, Assistant Professor of Geriatric Medicine for her great help, outstanding support, active participation and guidance.

Mohammed Amrousy

Thank to ALLAH

Thank you **Allah** for your support and guidance throughout my life asking you for your forgiveness and merci

This work is dedicated to ...

My beloved Parents, for always being there for me.

My wife and my lovely children for being the light of my life

My brothers and my sister for their love and care

My colleagues for their support

List of Contents

Title	Page No.
Introduction	1
Hypothesis	3
Aim of the Work	3
Review of Literature	
• Critically Ill Elderly Patients in The ICU	4
• Functional and Mental Status in Critically Ill Elderly	19
 Predictors of ICU Outcome in Critically Ill Eld Patients 	•
Subjects and Methods	69
Results	72
Discussion	91
Summary	101
Conclusion	105
Recommendations	106
References	108
Appendix	139
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Age and sex distributions	ution of the studied 72
Table (2):	In hospital mortality	in the studied cases72
Table (3):	Relation between the studied cases and Fat	e mean of age of the se:73
Table (4):	Comparison between in the three age group	in hospital mortality os73
Table (5):	Prevalence of delirit cognitive impairment	im and pre existing in the studied cases: 74
Table (6):	Relation between delirium, pre impairment and age of	——————————————————————————————————————
Table (7):	Relation between delirium, pre impairment and In ho	*
Table (8):	Relation between me hospital mortality:	an of MMSE and in 75
Table (9):	Instrumental Activitie (IADLs) in the studi admission:	•
Table (10):	Activities of Daily Li the studied cases befo	ving score (ADLs) in ore ICU admission:76
Table (11):	Activities of Daily Li the studied cases afte	ving score (ADLs) in r ICU admission:77
Table (12):	Daily Living score i	ean of Activities of n the studied cases ssion to the ICU:77
Table (13):	Relation between the and in hospital Morrocases:	

List of Tables (Cont..)

Table No.	Title	Page No.
Table (14):		the functional status
Table (15):	and the presence of	he functional status pre existing cognitive udied cases:
Table (16):		he functional status studied cases:80
Table (17):		ACHE II score and in80
Table (18):		age and APACHE II
Table (19):	<u>*</u>	re existing cognitive ACHE II score:81
Table (20):		elirium and APACHE
Table (21):		n MMSE and Acute82
Table (22):		the functional status e in the studied cases 83
Table (23):		number of co ospital mortality:83
Table (24):		the functional status rbidities:84
Table (25):		en number of co SE:84
Table (26):		en number of co CHE II score:85
Table (27):		uration of ICU stay

List of Tables (Cont..)

Table No.	Title	Page No.
Table (28):	and the presence of	luration of ICU stay pre existing cognitive85
Table (29):		luration of ICU stay86
Table (30):	and Mini Mental	duration of ICU stay Status Examination86
Table (31):		the functional status stay:86
Table (32):	morbidities presen	en number of co t in each case and t:87
Table (33):		n APACHE II score stay:87
Table (34):		ommon co morbidities 88
Table (35):		ommon causes of ICU 89
Table (36):	ICU mortality using	tors and predictors for g Multinomial Logistic 90

List of Abbreviations

AAN	American Academy of Neurology	
AD	Alzheimer's disease	
ADLs	Activities of daily living scale	
AIDS	Acquired Immune Deficiency Syndrome	
ANZICS	Australian New Zealand intensive care society	
APACHE II	Acute physiology and chronic health evaluation score 2	
APACHE III	Acute physiology and chronic health evaluation score 3	
BPSD	Behavioral and psychological symptoms of dementia	
CAM	Confusion assessment method	
CAPMAS	Central agency for public mobilization and Statistics	
ChEIs	Choline estrase inhibitors	
CT	Computerized tomography	
CVS	Cerebrovascular stroke	
DLB	Dementia with lewy bodies	
DM .	Diabetes mellitus	
DSM-III	Diagnostic and statistical manual of mental disorders, third edition	
DSM-III-R	Diagnostic and statistical manual of mental disorders, third edition revised	
DSM-IV	Diagnostic and statistical manual of mental disorders, fourth edition	
FDA	U.S Food and drug administration agency	
FIM	Functional independence measure	

FTD	Frontotemporal dementia
GFR	Glomerular filtration rat
GIT	Gastrointestinal tract
HAQ	Health Assessment questionnaire
HTN	Hypertension
IADLs	Instrumental activities of daily living scale
ICS	Intensive care society
ICU	Intensive care unit
MCI	Mild cognitive Impairment
MMSE	Minimental status examination
MPM	Mortality probability model
MRI	Magnetic resonance imaging
NFTs	Neurofibrillar tangles
NICE	National Intensive Care Evaluation
POCD	Postoperative cognitive dysfunction
RDRS	Rapid disability rating scale
SAPS	Simplified acute physiology score
SCCM	Society of critical care medicine
SD	Standard Deviation
TS	Trauma score
US	United states
VaD	Vascular dementia
VDRL	Veneral disease research laboratory

Introduction

Advanced age is associated with increased mortality in intensive care unit (ICU) patients (Wood and Ely, 2003).

Age was not an independent predictor of mortality and it appears that it is not advanced age per se but other factors associated with advanced age that determine prognosis in elderly patients (*Bo et al.*, 2003).

Factors that influence the outcome in elderly patients admitted to the ICU includes age, diagnosis, co morbidity, functional status (including cognitive functioning) before hospital admission, delirium, malnutrition, dehydration, acute renal failure, length of stay and complications such as nosocomial infections and pressure ulcers (*de Rooij et al.*, 2005).

Morbidity and mortality in elderly patient admitted to the ICU are higher than in younger patients and the most important factors independently associated with the highest risk of death are severity of illness, impaired level of consciousness and infection (*Vosylius et al.*, 2005).

The prognosis of older patients hospitalized in medical intensive care units depends not only on the acute physiological impairments, but also on a series of pre existing conditions such as loss of functional independence, severe and moderate cognitive impairment and low body mass index (*Bo et al.*, 2003).

Functional status including physical, cognitive and social functioning has been shown to be an important predictor of the hospital outcomes of older patients (*Inouye et al.*, 1998).

The prognosis of elderly patients hospitalized in a medical ICU depended not only on the Acute Physiology and Chronic Health Evaluation (APACHE II) score but also on the loss of functional independence and on the presence of moderate to severe cognitive impairment before ICU admission (*Bo et al.*, 2003).

Low body mass index has been shown to be an independent predictor of in hospital mortality among young and old hospitalized patients (*Landi et al.*, 2000).

Delirium, an often overlooked complication in older ICU patients, is an independent predictor of prolonged hospital stay and mortality (*Ely*, 2003).

Other factors that may have an effect on prognosis of ICU patients are adverse drug events, nosocomial infections and pressure ulcers (*Kane and Weber*, 2003).

HYPOTHESIS

The prognosis of elderly patients admitted to the Intensive Care Unit depends not only on the acute physiological impairments but also on the functional and mental status of the patients.

AIM OF THE WORK

To find the relation between the functional and mental status of the elderly patients admitted to the Intensive Care Unit and mortality.

Chapter One

CRITICALLY ILL ELDERLY PATIENTS IN THE ICU

Epidemiology

The aging of the world's population

The global population is aging. This trend results from a process referred to as demographic transition, characterized by declines in both fertility and mortality rates (*Bagshaw et al.*, 2009). The probability of survival to older age has improved and the absolute number and proportion of older persons is projected to increase in the next few decades (*Bagshaw et al.*, 2009).

The fastest growing age proportion is made up of those aged ≥ 80 years, increasing at an estimated 3.8% per year and projected to represent one-fifth of all older persons by 2050 (*Bagshaw et al.*, 2009).

Projections by the US Census Bureau suggest that the population aged 85 years and older is likely to grow from about 4 million in 2000 to 19 million by 2050 (*de Rooij et al.*, 2005).

In Egypt, Elderly people (65 years and more) number reached 3.3 millions in 2010 with ratio 4.2% of total population and the ratio is expected to reach 5.8% in the

year 2020 and 8% in 2030 according to Central Agency for Public Mobilization and Statistics (*CAMPAS*, 2011)

Aging of patients admitted in the ICU

Ageing of the population increases the proportion of people with chronic conditions, with corresponding expectations of decline in the functional status (*de Rooij et al.*, 2005). Elderly patients make up between 26% and 51% of patients who are admitted to ICUs (*Rockwood et al.*, 1993).

Older age is associated with an increased prevalence of chronic illness and functional impairment (Song et al., 2007). As a result, the rate of hospitalizations for acute illness among older persons is increasing (Boumendil et al., 2004). Also, the demand for critical care services and admissions to intensive care units (ICUs) is also projected to dramatically rise in the next decade (Angus et al., 2004).

Data from the United States estimates approximately 55% of all ICU bed-days are occupied by patients aged \geq 65 years and an estimated 14% of those patients aged \geq 85 years die in the ICU (*Angus et al.*, 2004).

In a large multicenter cohort study that gathered the data of 57 ICUs across New Zealand and Australia, *Bagshaw et al.* (2009) reported an increasing number of admissions of elderly patients aged 80 years and older of

roughly 6% per year between 2000-2005. In this cohort, the rate of admission of elderly aged 80 years and older represented approximately 14% of total admissions in 2005.

Bagshaw et al. (2009) also predicted that by 2015 the rate of elderly aged 80 years and older admitted to the intensive care unit (ICU) will increase by 72%, representing roughly 1 in 4 admissions to the ICU.

Differences in care between old versus young patients

There are conflicting data on the short-term and long-term survival for older patients admitted to the ICU (Somme et al., 2003). This may reflect differences in the severity and type of illness, length of follow-up, definitions for old age, and treatment intensity for older patients (Boumendil et al., 2004).

There is an urgent need to understand the implications on outcomes for older patients after ICU admission, including not only survival but also cognitive impairment, quality-of-life, and functional autonomy (Martin et al., 2006).

Rodríguez-Molinero et al. (2010) found that the decision to admit an elderly patient to the ICU was essentially based on age and the physician's estimation of