Evaluation of Bone Mineral Density and Body Composition in 11-12 years Old Egyptian Males

Chesis

Submitted for partial fulfillment of Master Degree

In Pediatrics

By

Shaimaa Mohammed Abdel Monem Ali

M. B., B. CH., Ain Shams University (2005)

Under supervision of

Prof. Dr. Heba Hassan Elsedfy

Professor of Pediatrics Faculty of Medicine Ain Shams University

Ass. Prof. Dr. Rasha Tarif Hamza

Assistant professor of Pediatrics Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2013

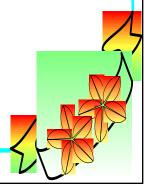
سورة البقرة الآية: ٣٢

First of all, thanks to **ALLAH** whose magnificent help was the main factor in completing this work.

It is a great honour to me to express my deepest gratitude and appreciation to **Prof. Dr. Heba Hassan El Sedfy** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces in the initiation and progress of this work.

I wish to express my unlimited gratitude to **Dr. Rasha Tarif**Hamza Assistant Professor of Pediatrics, Faculty of Medicine, Ain
Shams University, for her patience, assistance and very helpful
advice and guidance during the progress of this work. In fact, few
words never suffice to do justice in thanking her for her
extraordinary contribution of time, effort and valuable experience.

My special thanks to all my patients and their parents who agreed to share in this study. I'm thankful to them for their effort, time and cooperation.


Shaimaa Mohammed

- To my father and my mother
- To my husband and my son
- To my sisters and my family

I dedicate this work

Shaimaa Mohammed

List of contents

List of Contents

Page No.	Title
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction & Aim of the work	1
Review of Literature	
Normal Bone Anatomy and Physiology	4
Bone Minerals	24
Osteoporosis	43
Dual Energy X-Ray Absorptiometry (DXA))55
Subjects and Methods	71
Results	79
Discussion	97
Summary	108
Conclusions	111
Recommendations	112
References	113
Appendix	i-viii
Arabic summary	

List of Abbreviations

aBMD Areal bone mineral density

AI Adequate intake

ALP Alkaline PhosphataseATP Adenosine triphosphate

BA bone area

BMC Bone mineral contentBMD Bone mineral density

BMI body mass index

BMP Bone morphogenetic proteins

Ca²⁺ Calcium

cAMP Cyclic adenosine monophosphateCGRP calcitonin gene-related peptide

CT Calcitonin

CV% Coefficient of variationDRI Dietary reference intake

DXA Dual energy X-ray absorptiometryDXR Digital X-ray RadiogrammetryFDA Food and drug adminstration

FFM Fat free mass

FFQ Food Frequency QuestionnaireFGF-23 Fibroblast growth factor 23

FN Femoral neck

FNB Food and nutrition board

GC GlucocorticoidsGH Growth hormone

GHD Growth hormone deficiency

List of Abbreviations

IGF Insulin growth factorIGFBPs IGF-binding proteinsIhh Indian hedgehog

IL interleukin

IOM Institute of MedicineIR Interquartile range

ISCD International Society of Clinical Densitometry

LBM Lean body mass

LRP5 Low-density lipoprotein receptor related protein 5

LS Lumbar spine

MRI Magnetic resonance imagingNAS National Academy of Sciences

OI Osteogenesis imperfecta

OPG OsteoprotegrinPBF percent body fatPBM peak bone massPDEXA perpheral DEXA

PDGF Platelet derived growth factor

P_i inorganic phosphorus

PQCT Peripheral quantitative computed tomography

PTH Parathyroid hormonePTHrp PTH-related peptider

QCT Quantitative computed tomography

QUS Quantitative ultra sound

RA Radiographic absorptiometry

RANK Receptor activation of nuclear factor kappa

RANKL Receptor activator of nuclear factor kappa B

Ligand

RDA Recommended dietary allowance

List of Abbreviations

ROI_S Regions of interest

SB Subtotal body

SD Standard deviation

SDS Standard deviation score

SPECT Single photon emission computed tomography

SXA Single-energy x-ray absorptiometry

TBF total body fatTFM Total fat mass

TGF-B Transforming growth factor beta

TNF Tumor necrosis factor

TRP Transient receptor potential

UL Tolerable upper levelUVB Utraviolet B radiation

vBMD volumetric bone mineral density

VDR Vitamin D receptor

VEGF vascular endothelial growth factor

VFA Vertebral fracture assessment

WB Whole body

WHO World health organization

List of Tables

List of tables

Table No	Title	Page
Table (1)	Effects of GH on bone	17
Table (2)	Growth Factors	20
Table (3)	Dietary Recommended Allowances	27
	(RDAs) for Calcium	
Table (4)	Tolerable Upper Intake Levels (ULs) for	27
	Calcium	
Table (5)	Serum phosphorus reference range	28
	during childhood	
Table (6)	Regulation of serum calcium	38
Table (7)	Regulation of PTH Release	40
Table (8)	Factors involved in the regulation of	41
	Ca2+ and bone metabolism	
Table (9)	WHO criteria for classification of	49
	patients with BMD measured by DXA	
Table (10)	Imaging options used for osteoporosis	51
	diagnosis, screening, or fracture	
	assessment	
Table (11)	Common terms seen in a DXA report	57
Table (12)	Common pitfalls in DXA interpretation	69
Table (13)	Age, dietary calcium intake, sun	79
	exposure, and physical activity among	
	studied subjects	
Table (14)	Socioeconomic factors and score of	79
	studied subjects	
Table (15)	Anthropometric measurements of	79
	studied subjects	

List of Tables

Table No	Title	Page
Table (16)	Laboratory bone parameters of studied	80
	subjects	
Table (17)	DXA bone parameters and body	80
	composition of studied subjects	
Table (18)	Correlations between DXA parameters	81
	and age	
Table (19)	Correlations between DXA parameters	83
	and calcium intake	
Table (20)	Correlations between DXA parameters	83
	and sunlight exposure	
Table (21)	Correlations between DXA parameters	84
	and socioeconomic factors	
Table (22)	Correlations between DXA parameters	86
	& El-Bohy socioeconomic scoring	
Table (23)	Correlations between DXA parameters	88
	and weight SDS	
Table (24)	Correlations between DXA parameters	90
	and height SDS	
Table (25)	Correlations between DXA parameters	
	& each of BMI and its SDS	91
Table (26)	Correlations between DXA parameters	93
	and laboratory bone parameters	
Table (27)	Correlations between DXA parameters	96
	and physical activity	

List of figures

Figure No	Title	Page
Figure (1)	Anterior skeletal anatomy	4
Figure (2)	Structure of long bone	7
Figure (3)	Compact and spongy (cancellous) bone	8
Figure (4)	Woven bone matrix showing collagen	10
	fibrils	
Figure (5)	Endochondral ossification	14
Figure (6)	Peak Bone Mass Schematic	21
	representation in relative units of normal	
	skeletal development. Bone mass	
	continues to increase until the fourth	
	decade of life	
Figure (7)	Synthesis and Metabolism of Vitamin D	31
	and its role in the Regulation of Calcium,	
	Phosphorus, and Bone Metabolism	
Figure (8)	Calcium regulation in the human body	33
Figure (9)	Calcium homeostasis. Effect of low (A)	35
	vs. high (B) dietary calcium on calcium	
	homeostasis.	
Figure (10)	Vitamin D and PTH action on bone cells.	37
	1, 25(OH)2D and PTH stimulation of the	
	mobilization of calcium from the	
	skeleton through interactions with their	
	respective receptors on osteoblasts,	
	which induce expression of the receptor	
	activator of nuclear factor-B (RANK)	
	ligand (RANKL).	

List of Figures

Figure No	Title	Page
Figure (11)	Negative feedback regulation of PTH	39
	release.	
Figure (12)	Vertebral compression fractures in the	46
	lumbar spine of a child with idiopathic	
	juvenile osteoporosis	
Figure (13)	A scanner used to measure bone density	56
	with dual-energy X-ray absorptiometry	
Figure (14)	Correct positioning and analysis of the	66
	L1-L4 spine and the proximal femur	
Figure (15)	DXA images showing regions of interest	67
Figure (16)	Correlation between age and whole body	82
	BMD.	
Figure (17)	Correlation between age and subtotal	82
	body BMD.	
Figure (18)	Correlation between house size and	85
	whole body z score.	
Figure (19)	Correlation between house size and	85
	femoral neck BMD.	
Figure (20)	Correlation between El Bohy score and	87
	whole body z score.	
Figure (21)	Correlation between El Bohy score and	87
	lumbar spine BMD.	
Figure (22)	Correlation between El Bohy score and	
	femoral neck BMD.	88
Figure (23)	Correlation between weight SDS and	89
	lean body mass.	
Figure (24)	Correlation between height SDS and	91
	whole body BMC.	

List of Figures

Figure No	Title	Page
Figure (25)	Correlation between body mass index	92
	and whole body fat.	
Figure (26)	Correlation between body mass index	93
	SDS and whole body fat.	
Figure (27)	Correlation between serum calcium and	94
	whole body BMD.	
Figure (28)	Correlation between serum phosphorus	95
	and whole body BMC.	
Figure (29)	Correlation between serum alkaline	95
	phosphatase and lean body mass.	

Introduction

Bone densitometry is a widely used and universally accepted tool for the assessment of bone mass in adults. In the last two decades, however, interest in bone densitometry in children has increased. This can be explained firstly by the introduction of more effective treatment regimens aimed at increasing and maintaining bone density in a variety of diseases influencing bone development and or growth and secondly, by the fact that several reports have indicated the importance of peak bone mass in relation to future development of osteoporosis (Van Rijn et al., 2006).

There are 2 main reasons for measuring bone mineral content (BMC) in children: to quantify the deficits in bone mineral associated with the various disorders that cause osteopenia in children and to improve our understanding of the childhood antecedents of osteoporosis, a condition that happens to manifest itself in elderly subjects. Available data suggest that the genetic susceptibility to osteoporosis may be detectable in early childhood (*Gilsanz and Wren*, 2007).

Measurement of bone mineral density (BMD) by dual – energy X-ray absorptiometry (DXA) is viewed widely as the preferred method for clinical use in children because of its speed, precision, safety, and wide spread availability. The radiation exposure is comparable to that received during a round trip transcontinental airplane flight (*Bachrach*, 2005).

DXA is an attractive option for clinical use that gives estimates of bone mineral mass, fat free mass (FFM), which is approximately equivalent to lean body mass (LBM), and total fat mass (TFM). DXA exploits the fact that the energy dependency of the strength of interaction between X-rays and bone mineral differs from that for soft tissue. At low energies, bone dominates the attenuation process while, at higher

Introduction and Aim of the Work.

energies, X-rays interact to about the same extent with bone and soft tissue (Sala et al., 2006).

The 3 main limitations of DXA measurement in children are: (1) the current lack of a standardized pediatric normative database, (2) the lack of a meaningful clinical outcome measure related to DXA values in children, and (3) inaccuracies resulting from growth -related variations in bone and body size and composition (*Gilsanz and Wren*, 2007).