Role of Utilization of Three and Four Dimensional Ultrasonography in Evaluation of Fetal Central Nervous

System

Essay

Submitted for partial fulfillment of the MSc degree in radiodiagnosis

By **Ahmed Abd Elrahman Abd Ellah**M.B,B.CH.South valley UNV.

Supervisors

Prof. Dr. Mohsen El-Sayed Khalil

Professor of radiodiagnosis Faculty of medicine Cairo University

Prof. Dr. Ahmed Ibrahim Ahmed Aref

Professor of obstetrics and gynecology Faculty of medicine Cairo University

> Faculty of medicine Cairo university 2013

Acknowledgement

Praise and thanks to ALLAH the all mighty who provided me with patience and determination to complete this work.

I would like to express my deepest gratitude and appreciation to Dr. Mohsen Khalil, Professor of Radiodiagnosis, Cairo University, for his close valuable guidance all through the work, and for his advice and sincere support during supervision of this work. He provided me with valuable comments, knowledge, and experience for achieving this work.

Also, I would like to express my great thanks and gratitude to Dr. Ahmed Aref, Professor of obstetrics and gynecology, Cairo University, for his general helps and his indispensable advice, precious observations, and support all through supervision of this work.

Finally, a special thanks to my Family, for there tolerance, patience and serious motivation through out this work.

Ahmed Abd Elrahman

Abbreviations

2D	Two dimensional	
3D	Three dimensional	
4D	Four dimensional	
3HV	Three horn view	
3V	Third ventricle	
4V	Fourth ventricle	
AGCC	Agenesis of corpus callosum	
BC	Blake's pouch cyst	
BS	Brain stem	
CC	Corpus callosum	
CM	Cisterna magna, Conus medullaris	
CMV	Cytomegalovirus	
CNS	Central Nervous System	
CRL	Crown Rump Length	
CS	Carnegie stage	
CSD	Closed spinal dysraphism	
CSF	Cerepro spinal fluid	
CSP	Cavum septum pellucidum	
IH	Inferior horn	
ISUOG	International Society of Ultrasound in Obstetrics and	
	Gynecology	
LV	Lateral ventricle	
MRI	Magnetic resonance imaging	
NF	Nuchal fold	
NTD	Neural tube defect	
OSD	Open spinal dysraphism	
ROI	Region of interest	
SOP	Septo optic dysplasia	
TUI	Tomographic Ultrasound Imaging	
US	Ultrasonography	

Figure	Comment	Page
No.		
1	Neural tube formation	5
2	3D Scanning by a 3D probe	10
3	construction of a 3D data set	12
4	Settings for a viewpoint and ROI for a	13
	3D Data set	
5	surface rendering	14
6	Three orthogonal plane display of a fetus	14
7	Multiplanar reformatting with texture	15
	mapping	
8	Volume rendering	15
9	3D image of fetal skeleton by maximum	16
	intensity projection	
10	3D image of megalocystis and	17
	megaureters by minimum intensity	
	projection	
11	volume imaging.	17
12	Relation between three-orthogonal	18
	planes and a 3D image	
13	The uterine wall hides a part of a fetus at	18
	10 weeks of gestation	
14	3D images of a fetus with omphalocele	19
	at 35 weeks of gestation	
15	Removal of unfavorable parts around a	20
	fetus with omphalocele at 35 weeks of	
	gestations	
16	cranial bone by 3D surface rendering	21
17	acquisition of an ultrasound volume	22
	of the fetal brain by an axial	
	approach	
18	Schematic representation of	23
	multiplanar analysis of ultrasound	
	volumes.	
19	Multiplanar analysis of an ultrasound	24
	volume of the fetal brain.	
20	Tomographic display mode of brain	25

Figure	Comment	Page
No.		
21	Tomographic display mode of the fetal	26
	brain	
22	3D fetal neuroscan"Thick-slice and	26
	serial cronal sections	
23	3D sono-angiography	27
24	maximum or transparency mode	28
25	Inversion mode	29
26	Surface rendering of fetal face	29
27	volume acquition of fetal spine	30
28	3D US of spine by maximum mode	31
29	median plane obtained from a	33
	multiplanar display mode	
30	Standard axial plane taken at the level	34
	of the lateral ventricles	
31	The three-horn view	34
32	alignment necessary to obtain the 3HV	35
33	evaluation of both lateral ventricles by	36
	tomographic display mode	
34	anatomic position of the successive	37
	coronal planes	
35	TUI mode to display the successive	38
	coronal planes	
36	the correct anatomic position of the	39
	three axial planes	
37	Examples of 3D ultrasound	40
	reconstructions of the commonly used	
	axial planes	
38	3D US of the fetal spine using	41
	transparent mode	
39	3D US images of the fetal spine	42
	showing ossification centers	
40	3D reconstructed image of the yolk sac	43
	and 5.5 mm CRL-embryo	

Figure No.	Comment	Page
41	3D reconstructed image of the embryo	44
	(8 weeks of gestation)	
42	Lateral and back view of aborted	44
	embryo at 8 weeks of gestation	
43	3D reconstructed image of the embryo	45
	(6 to 9 weeks of gestation).	
44	3D reconstructed image of fetal	45
	vertebral development between 13 and	
	16 weeks of gestation	
45	Tomographic sagittal imaging of normal	46
	fetus at the beginning of 8 weeks of	
	gestation	
46	Three orthogonal image of normal brain	46
	at 8 weeks of gestation	
47	Sagittal section and coronal section of	47
	10 weeks fetus	
48	Normal brain development by	47
	midsagittal 3D ultrasound section	
	between 8 and 12 weeks of gestation	
49	inversion-rendered image of an	48
	embryonic brain at 7 weeks	
50	Three orthogonal view and 3D	49
	reconstructed image of normal fetus at	
	16 weeks of gestation	
51	vertebral development by 3D US from 9	50
	to 22 weeks of gestation	
52	Rendered three-dimensional image of	51
	the profile of an anencephalic fetus at 19	
	weeks.	
53	The three orthogonal planes and a	52
	rendered three-dimensional image of the	
	fetus seen in Fig.52	
54	Exencephaly.	53
55	Tomographic display demonstrating a	54
	posterior cranial mass	
56	power Doppler angiography	54
	demonstrating occipital meningyocele	

Figure	Comment	Page
No.		
57	Tomographic display view of	55
	meningocele	
58	A 22-week fetus with sacral	56
	meningocele	
59	Tomographic display mode through the	57
	entire width of the spine defect	
60	MIP mode to demonstrate the spine	57
	defect	
61	Myelomeningocele in the first trimester	58
62	Myelomeningocele with clubfoot	58
63	Myelomeningocele with severe kyphosis	59
64	Myeloschisis at 18 weeks of gestation	59
65	Assessment of spina bifida by 3D US.	60
66	Transverse view of the posterior fossa in	61
	a normal fetus	
67	Transverse view of the posterior fossa in	61
	a fetus with NTD	
68	Transverse view of the head in a fetus	62
	with NTD	
69	sagittal plane demonstrates the distal end	63
	of the CM	
70	The tomographic display mode to verify	63
	that neural tissue is not seen distal to L4	
71	Diastematomyelia by US	64
72	Diastematomyelia by US	65
73	Diastematomyelia by US	65
74	Fetuses with congenital scoliosis at 19	66
	weeks	
75	Fetuses with congenital scoliosis by 3D	66
	Ultrasound at 20 weeks	
76	Iniencephaly, 14 weeks gestational age	67
77	Multiplanar display of a fetus with	69
	agenesis of the corpus callosum	

Figure No.	Comment	Page
78	Tomographic display mode demonstrating AGCC	70
79	AGCC in coronal and median planes	70
80	Multiplanar display focusing on the ventricular system	71
81	Angiographic demonstrations of brain vessels in AGCC	72
82	Semi-lobar holoprosencephaly	73
83	Semi-lobar holoprosencephaly	74
84	Multiplanar mode of a fetus with semilobar holoprosencephaly	75
85	Multiplanar view of a case of alobar holoprosencephaly	75
86	Multiplanar display of the posterior fossa	77
87	Median plane focused on the posterior fossa	78
88	Median plane of the fetal brain focused on the posterior fossa	79
89	Dandy Walker malformation	80
90	Tomographic display mode taken throughout the length of the cerebellum	80
91	Tomographic display mode through the entire height of the cerebellum	81
92	Multiplanar mode of a fetus with Dandy Walker variant	82
93	Multiplanar mode of a case of Blake's pouch cyst	83
94	Multiplanar mode of a brain with mega cisterna magna	84
95	Chiari type II malformation	85
96	Pachygyria at 33weeks of gestation	87
97	Bilateral schizencephaly at 33 weeks of gestation	88
98	Schizencephaly	89

Figure No.	Comment	Page
99	Hydrancephaly by US	90
100	early detection of microcephaly	90
101	Aneurysm of the vein of Galen	92
102	Tomographic display mode, demonstrating arachnoid cyst	93
103	Tomographic display mode, through the entire length of the arachnoid cyst	94
104	Tomographic display mode, through the entire width of the arachnoid cyst	94
105	Brain tumor at 26 weeks of gestation	96
106	Hydrocephalus and ventriculomegaly	98

Contents

•	Introduction	1
•	Aim of work	4
•	Embryological development of the CNS	5
•	Physical principles of 3D/4D Ultrasonograph	ny 10
•	Technique of 3D/4D Ultrasonography	21
•	Ultrasound assessment of normal fetal	CNS
	anatomy	32
•	3D/4D Sonoembryology	43
•	Assessment of fetal CNS anomalies	51
•	Summary	99
•	Conclusion	100
•	References	101
_	Arabic summary	

Abstract

The multiplanar mode is used to navigate through the volume, observing information on a specific structure in all three orthogonal planes. Other display options, mainly the tomographic mode, are used to display the anomaly. The varieties of display modes and the infinite number of different planes that can be generated facilitate the diagnostic process. These imaging capabilities are extremely important during the first trimester of the pregnancy when manipulations with the vaginal probe are restricted and obtainable ultrasound sections are limited. Additional values of this technology include an off-line analysis of the volume by the sonologist to obtain the necessary planes, as well as an electronic transmittal for an off-site expert to provide a second opinion consultation.

Key word

Three and Four Dimensional – AGCC- ISUOG- Ultrasonography-ROI

Introduction

Congenital abnormalities account for 20-25% of perinatal deaths. Now, many genetic and other disorders can be diagnosed early in pregnancy. Prenatal diagnosis uses various noninvasive and invasive techniques to determine the health of, the condition of, or any abnormality in an unborn fetus. Techniques of fetal visualization are:

a) Noninvasive techniques; Ultrasound, Fetal echocardiography,

Magnetic resonance imaging (MRI).

b)Invasive techniques; Embryoscopy, Fetoscopy (Glenn, 2010).

Central nervous system (CNS) malformations are the second most frequent category of congenital anomaly, after congenital heart disease. (Stevenson et al, 2008). Ultrasound (US) detection of prenatal central nervous system (CNS) anatomic anomalies is very important in making decision about therapeutic termination. It is a non-invasive technique, which is more acceptable by patients. Several studies have shown an accuracy of 92% to 99.7% for US detection of CNS anatomic anomalies (Tahmasebi et al, 2007).

3D/4D ultrasonography has been used as an adjunctive imaging modality to 2D ultrasonography. Thus, the current paradigm consists of performing 3D/4D ultrasonography as part of a target scan, after an initial diagnostic impression has been established by 2D ultrasonography (*Bornstein et al,2008*).

Introduction

Three-dimensional (3D) ultrasonography has been increasingly used for examination of the human fetus. This technology allows examiners to move from a 3D mental reconstruction of two-dimensional (2D) images to actual 3D/4D visualization of anatomical structures (*Tahmasebi et al,2007*).

Other potential benefits of 3D/4D ultrasonography in fetal neurosonography include:

- (1) The ability to determine the severity, location and extent of central nervous system abnormalities.
- (2) The possibility of reconstructing and visualising the corpus callosum in the sagital plane from volume data sets.
- (3) The ability to visualise the 3 horns of the ventricular system in a single plane (3 horn view).
- (4) The possibility of increasing the speed of fetal neurosonography performed by 2D transvaginal ultrsonography .
- (5) The ability to review volume data interactively after the patient has left the examination room.
- (6) The availability of a variety of rendering methods that allows visualization of different characteristics of the same structure.
- (7) The possibility of rotating the volume dataset and examine anatomical structures from different perspectives.

Introduction

(8) The ability to transmit data over networks for consultation in tertiary care centers and the potential to use offline software programs as an interactive educational tool (*Bornstein et al, 2008*).

AIM OF WORK

The aim of this study is to determine the extended Imaging of 3D , 4D ultrasonography in prenatal assessment of anatomical structure of central nervous system and early diagnosis of the CNS congenital anomalies.