DETERMINATION OF INTERLEUKIN 17 IN TESTICULAR BIOPSIES OF AZOOSPERMIC PATIENTS

Thesis

Submitted For Partial Fulfillment For M.D. Degree in Andrology

By

Hossam Galal Abdelmaksoud Elenany

Supervisors

Prof. Dr. Mohamed Mohamed Farid Raiaa

Professor of Andrology and STDs

Faculty of medicine - Cairo University

Prof. Dr. Laila Ahmed Rashed

Professor of Biochemistry

Faculty of Medecine- Cairo University

Prof .DR. Yasser Ibrahim Elkhayat

Assistant Professor of Andrology and STDs

Faculty of Medecine-Cairo University

Faculty of Medecine

Cairo University

(2014)

Abstract

Background: Male factor infertility affects almost half of infertile couples. Infection and inflammation of the male genital tract including the testis are accepted as important etiological factors of infertility in men. Interleukin 17 is a specific cytokine for T helper 17 cells which had been shown to be involved in inflammatory diseases.

Aim of study: To add more insight to the role played by Th17 in infertility, by studying the expression of IL-17 in the testicular biopsies of azoospermic patients. It also aimed to analyze the relationship between IL-17 and the testicular pathology.

Patients and methods: This study included 62 infertile males, classified in 3 groups. The first group included 25 patients complaining of functional azoospermia whose semen analysis were normozoospermic and deteriorated to azoospermia, the second group included 25 patients complaining of obstructive azoospermia. 12 normozoospermic controls in the third group who failed to provide a semen sample on the day of ICSI examined for IL-17 by PCR & immunohistochemistry.

Results: The mean testicular level of IL-17 in the functional group and obstructive group was significantly higher than in controls (P<0.05). A weak positive correlation has been found between the testicular level of IL-17 in the functional group and the period since last time the patient showed sperms in his analysis ,also a significant correlation has been detected between IL-17 level and the testicular pathological pattern with the highest level in mixed Sertoli cell only syndrome and lowest level in hypospermatogenesis.

To add on a minimum level of expression was detected in the control normozoospermic group which indicates a role for IL-17 cytokine in the normal testicular function.

Conclusions: A basic role is present for the immune system in regulation of testicular function which is obvious to be disturbed with any dysregulation in the testicular milieu. Inflammation is a basic cause in induction of male infertility through imbalance in the testicular microenvironment privilege. IL-17 high level in both functional and obstructive group predicts an inflammatory reaction contributing in the etiopathogenesis of azoospermia.

Key words:

(Azoospermia, T helper 17, Interleukin 17, testicular immune privilege)

Acknowledgment

First, thanks to GOD for blessing this work until it has reached its end, as a part of his generous help throughout our life.

It was an honor to work under the supervision of eminent professors, who lent me their whole hearted support and immense facilities as is their usual with their juniors. To them, I owe more than I can record.

I would like to express my deepest gratitude and highest appreciation to **Prof. Dr. Mohamed Farid Raiaa**, professor of Andrology and STDs, Faculty of Medicine, Cairo University for his continuous encouragement, generous support and unlimited help.

I would like to express my deepest gratitude and highest appreciation to **Prof. Dr. Laila Rashed,** Professor of Biochemistry, Faculty of Medicine, Cairo University, for her generous support and her great effort in the lab work.

I am deeply indebted to **Prof. Dr. Yasser Alkhyat** assistant professor of Andrology and STDs, Faculty of Medicine, Cairo University for his unlimited effort, cooperation and useful instructions.

Endless thanks to **Dr. Ahmed Alguingy** Lecturer of Andrology and STDs, Faculty of Medicine, Cairo University, for his constructive valuable advice and excellent supervision, his time and supreme effort are clear in every part of this work.

I am also grateful to **Prof. Dr. Ibrahim Fahmy, Prof. Dr.**Mohamed Abbas professors of Andrology and STDs, Faculty of Medicine, Cairo University & Dr. Eslam Fathy Lecturer of Andrology and STDs, Faculty of Medicine, Cairo University for their valuable help.

I would like to offer my deepest gratitude to all my senior staff, and my colleagues in the Department of Andrology, Cairo University for their help during the preparation of this work.

Finally, I dedicate this work to my loved ones, my family with special dedication to my wife and to my beloved daughters their love and endless giving and support could never be forgotten or paralleled.

Lists of Contents

	Page
List of Abbreviations	I
List of Tables	III
List of Figures	IV
List of Graphs	V
Introduction and Aim of the Work	1
Review of Literature	
Chapter (1): Non obstructive Azoospermia	3
Chapter (2): obstructive Azoospermia	23
Chapter (3): T helper 17 And Interleukin 17	34
Chapter (4): Testicular immunology	48
Patients and Methods	91
Results	102
Discussion	112
Summary and Conclusion	119
References	120
Arabic Summary	

List of Abbreviations

AID	Acquired immune deviation
Aire	Autoimmune regulatory
AMH	Anti-Muellerian hormone
AO	Autoimmune orchitis
APCs	Antigen presenting cells
AZF	Azoospermic factor
BMPs	Bone morphogenetic proteins
BTB	blood testicular barrier
CBAVD	Congenital bilateral absence of the vas deferens
CCR	Chemokine receptor
CF	Cystic fibrosis
CFTR	Cystic fibrosis transmembrane regulator gene
CIS	Carcinoma insitu
COX-2	Cyclo-oxygenase 2
Crry	Complement receptor-related protein
CXCR6	Chemokine receptor
DAMPs	Damage-associated molecular patterns
DAZ	Deleted in azoospermia
DCs	Dendritic cells
DFFRY	Drosophila fat-facets related Y
EAO	Experimental autoimmune orchitis
EDO	Ejaculatory duct obstruction
EV	Epidydymo-vasostomy
FADD	Fas-associated death domain protein
FOXP3	Forkhead box P3
FSH	Follicle stimulating hormone
Gas6/ProS	Growth-arrest-specific gene 6 and Protein S
HCG	Human chorionic gonadotropin
HLA	Human leukocytic antigen
HMGB1	High-mobility group box1
HO- 1	Haemoxygenase
HS	Hypospermatogenesis
HSPs	Heat shock proteins
IDO	Indoleamine 2,3-dioxygenase
IFN	Interferon
IFNAR	Interferon Alpha Receptor
IL	Interleukin
iNOS	Inducible nitric oxide synthtase
iTreg	Induced T regulatory cells
5	inacou i regulatory cone

LH	Leutinizing hormone
LPS	Lipopolysaccahride
lyso-GPCs	Lyso-glycerophosphatidylcholines
MA	Maturation arrest
MCP-1	Monocyte chemoattractant protein-1
MHC	Major histocompatibility complex
MPCs	Myoid peritubular cells
NFĸB	Nuclear factor kappa beta
NK	Natural killer
NO	Nitric oxide
NOA	Non obstructive azoospermia
OA	Obstructive azoospermia
PAMPs	pathogen-associated molecular patterns
PAR2	proteinase-activated receptor-2
PD-1	Programmed death receptor-1
PDL1	Programmed death ligand 1
PESA	Percutaneous sperm extraction
RBM	RNA-binding motif
RORC	Retinoic acid-receptor-related orphan receptor-c
ROS	Reactive oxygen species
SCO	Sertoli cell only
SCs	Sertoli cells
Smad	Mothers against decapentaplegic homolog
SOCS	Suppressor of cytokine signaling
SRY	Sex determining region Y
StAR	Steroidogenic acute regulatory protein
STAT	Signal transducer and activator of transcription
Tbet	T-box expressed in T cells
TcR	T cell receptor
TESE	Testicular sperm extraction
TGF- β	Transforming growth factor beta
Th17	T helper 17
Th3	T helper 3
TJs	Tight junctions
TLR	Toll-like receptor
TNFR	Tumor necrosis factor receptor
TNF-α	Tumor necrosis factor alpha
TRADD	TNFR-associated death domain protein
Tregs	Regulatory T cells
TRUS	Tran-rectal ultra sound
TURED	Transurethral resection of the ejaculatory ducts

List of Tables

Table No.		Page
Table (1)	Causes of non obstructive azoospermia	5
Table (2)	Represent classification of testicular histopathology	20
Table (3)	Represent the interpretation of the Johnson score	23
Table (4)	Inflammatory Cells In the testis	61
Table (5)	The oligonucleotide primers sequence of studied genes	99
Table (6)	Demographic data of the 3 groups	103
Table (7)	Relation of IL 17 Between the 3 groups	104
Table (8)	Relation of IL-17 Between the Functional	104
Table (9)	Control groups & The correlation between IL 17 and age	106
	in the 3 groups.	
Table (10)	The correlation between IL 17 and smoking in the 3	106
	groups	
Table (11)	The correlation between IL 17 and Sperm retrieval in the	107
	functional group	
Table (12)	Correlation between IL 17 and B-HCG Positively of wife	107
	after ICSI in the 3 groups.	
Table (13)	Relation of IL 17 with Duration of deterioration (the period	108
	since last semen analysis showed sperms) in functional	
	group.	
Table (14)	Correlation of IL 17 with different testicular Pathologies in	108
	functional group.	
Table (45)	accompletion between II 47 and eticlose of infentility in the	400
Table (15)	correlation between IL 17 and etiology of infertility in the	109
T 11 (40)	obstructive group	400
Table (16)	correlation between IL 17 and semen count in the control	109
	group	

List of Figurers

Figure No.		Page
Figure (1)	various testicular histopathologic patterns.	21
Figure (2)	Model for T helper or T regulatory differentiation from naïve CD4+ T cells	36
Figure (3)	Transcriptional regulation of TH17-cell differentiation.	38
Figure (4)	Different organ involvement by TH 17 cells	41
Figure (5)	Structure of blood testicular barrier.	50
Figure (6)	Factors directing testicular functions.	52
Figure (7)	Naïve T cell differentiation.	58
Figure (8)	Factors maintaining testicular immune privilege.	87
Figure (9)	Immunohistochemichal analysis of the 3 groups	110
		111

List of Graphs

Graph No.		Page
Graph (1)	represent the difference between the 3 groups regarding IL17 level	105
Graph (2)	Difference of IL-17 Between the groups.	105

INTRODUCTION

The incidence of azoospermic males in general population is 1% and in infertile men it ranges from 10% to 20% which may result from pre testicular, testicular or post testicular causes. Non obstructive azoospermia represent the testicular causes which detected by testicular biopsy and has prevalence ranged from 40% to 60% (Jarow et al., 1989) while obstructive azoospermia accounts for 6.1% to 13.6% of patients presenting for fertility evaluation (Nieschlag and Lenzi, 2013).

The testis is an immunologically privileged site where germ cell antigens are protected from autoimmune attack (Fijak and Meinhardt, 2006). However, the testicular environment does not preclude inflammatory reactions and recruitment of tissue-specific T lymphocytes appears to be a crucial component of the inflammation cascade (Schuppe and Meinhardt, 2005). In fact, testicular inflammatory disorders leading to impairment of spermatogenesis are thought to be a primary reason for male infertility (Schuppe et al., 2008). Histopathological alterations in the damaged testis are manifested by increased numbers of leucocytes in the interstitium, autoantibody production, different degrees of germ cell degeneration and sloughing resulting in aspermatogenesis and atrophy of the seminiferous tubules (Suescun et al., 2003).

Furthermore, several studies could show that T lymphocytes play an essential role in the pathogenesis of male infertility because of infection and inflammatory conditions (Meinhardt et al., 2000).

However, the precise immunopathogenic mechanisms responsible for the T lymphocytes in the infertile testis are not completely known.

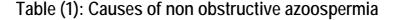
T helper (Th) 17 cells have recently been identified as a distinct lineage of CD4+ T cells that is characterized by the production of interleukin (IL)-17A, IL-17F, TNF-a, IL-21 and IL-22. Accumulating data suggest that Th17 cells play a significant role in infectious diseases, autoimmune conditions, adaptive immune response, mucosal immunity and tumour (**Dong, 2008**).

By reviewing the literature, there was no study which assessed the level of IL-17 in human testicular biopsies using real time PCR.

AIM OF THE STUDY

The **aim** of the study is to assess the role of IL-17 regarding the etiopathogenesis of azoospermia either functional or obstructive.

NON-OBSTRUCTIVE AZOOSPERMIA


Introduction

The incidence of azoospermic males in general population is 1% and in infertile men it ranges from 10% to 20% which may result from pre testicular, testicular or post testicular causes. Non obstructive azoospermia represent the testicular causes which detected by testicular biopsy and has prevalence ranged from 40% to 60% (**Jarow et al., 1989**).

Azoospermia may result from pre-testicular or testicular causes spermatogenesis or post-testicular causes resulting obstruction of the genital tract where complete spermatogenesis is found at histopathological examination (Jow et al., 1993). Pre-testicular causes are including defect in the hypothalamus or pituitary gland resulting in impairment the production of FSH and/or LH resulting in secondary spermatogenic (testicular) failure. Primary spermatogenic failure is defined as any spermatogenic alteration by cases other than hypothalamic-pituitary diseases. The severe forms of primary spermatogenic failure present clinically by azoospermia with different causes. Testicular causes of azoospermia are collectively referred to as non-obstructive azoospermia (Jarow et al., 1989).

Etiology

The causes of non obstructive azoospermia can be classified either congenital or acquired causes, the next table will represent the causes of non obstructive azoospermia.

Congenital causes

Genetic disorder

- Klinefelter's syndrome
- Y chromosome microdeletions
- Myotonic dystrophy
- Kennedy's syndrome
- Androgen insensitivity syndromes
- Noonan's syndrome
- Sex reversal syndrome (XX male)

Other disorders

- Maldescended testes
- Bilateral anorchia (Vanishing Testis Syndrome)
- Gonadal dysgenesis
- Varicocele

Acquired Causes

Trauma

Testicular torsion

Testicular tumors

Medications

- Cytotoxic drugs
- Hormones (androgens, antiandrogens, oestrogens, progestagens, anabolics)
- Hormonally active drugs (cimetidine, spironolactone, digoxin, ketoconazole)
- Psychotropic drugs, certain antiepileptics, antiemetics.
- Anthelmintics (niridazole)
- Salazosulphapyridine

Radiotherapy

Surgeries that can cause devascularization of the testes Infections

- Viral infections (Mumps orchitis, influenza)
- Bacterial (brucellosis, typhoid fever)
- Specific granulomas (Syphilis, Leprosy)

Environmental factors (toxins, irradiation, heat)

Systemic diseases (liver cirrhosis, renal failure)

Idiopathic

(Fahmy, 2010)