Non-Operative Management of Blunt Hepatic Trauma

Essay

Submitted for partial fulfillment of master degree in General Surgery

By

Khaled Osama Omara

M.B.B.ch

Supervised by

Prof. Husam Eldeen Hassan Hussin Azazy

Professor of general surgery
Faculty of Medicine - Ain Shams University

Dr. Wafi Fouad Salib

Lecturer of general surgery

Faculty of medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2009

سورة النمل

Acknowledgement

First and foremost, thanks to "ALLAH" for granting me the power to accomplish this work.

I would like to express my endless gratitude to

Prof. Husam Eldeen Hassan Hussin

Hzazy

Professor of general surgery

Faculty of Medicine - Ain Shams University
For giving me the honor to work under his supervision and providing me with a lot of encouragement.

Also my deep thanks to

Dr. Wafi Fouad Salib

Lecturer of general surgery

Faculty of medicine - Ain Shams University
For his generous assistance, valuable guidance
and unfailing efforts during the whole period of
the study.

Finally I would like to thank my parents and my wife for their great support and advice also my best regards for my friend Dr: Sameh for being my friend.

Page No.

Introduction1
Aim of the work4
Review of the literature
- Surgical anatomy of the liver5
- Pathophysiology and complications48
- Initial assessment & diagnosis63
- Management109
Conclusion152
English summary153

contents

Arabic summary.

List of figures

Fig. No	•	Title	Page No.
Figure	(1):	Development of the liver	7
Figure	(2):	Embryology of the liver	9
Figure	(3):	Hepatic lobe	10
Figure	(4):	Sectoral anatomy of the liver	18
Figure	(5):	Segmental anatomy of the liver	19
Figure	(6):	Glisson's capsule	20
Figure	(7):	Ligaments of the liver	25
Figure	(8):	The fissures of the liver	29
Figure	(9):	The porta hepatis	30
Figure ((10):	The portal vein	33
Figure ((11):	Axis anatomy	35

Figure (12):	The hepatic veins38
Figure (13):	The biliary tree44
Figure (14):	Anatomic divisions of the common bile duct45
Figure (15):	Innervation of the liver47
Figure (16):	Areas scanned in FAST85
Figure (17):	This is a positive DPL due to blunt trauma90
Figure (18):	DPL catheter left in place91
Figure (19):	CT scan of liver laceration98
Figure (20):	Grade 1 liver injury101
Figure (21):	Grade 2liver injury102
Figure (22):	Grade 3 liver injury102
Figure (23):	Grade 4liver injury102
Figure (24):	Grade 5liver injury 103
Figure (25):	Selective celiac arteriogram105

List of tables

Table No.	Title	Page No.
Table (1):	Frequency of liver injury	51
Table (2):	Extra hepatic biliary tree injury s	cale57
Table (3):	Descriptors of GCS Components	69
Table (4):	Revised Trauma Score	71
Table (5):	Representative APACHE II Calc	ulation73
Table (6):	Abbreviated Injury Scale	75
Table (7):	An example of an ISS calculation	ı77
Table (8):	Advantages and Disadvantages o	f Ultrasound86
Table (9):	Indications and Contraindication	s of DPL 88
Table(10):	Liver Injury Scale	99
Table(11):	Monitoring of patients with liver	injuries117

List of abbreviations

AAST.....American Association for the Surgery of Trauma AIS...... Abbreviated Injury Scale **APACHE.....**Acute Physiology and Chronic Health **Evaluation APS.....** Acute Physiology Score AEAngioembolization BrBranch **CES.....** Contrast-Enhanced Sonography CTComputed Tomography DCL...... Damage Control Laparotomy DCS...... Damage Control Surgery DL.....Diagnostic Laparoscopy

DPL Diagnostic Peritoneal Lavage

ED..... Emergency Department

ERCP.....Endoscopic

Retrograde

Cholaniopancreatography

FAST.....Focused Abdominal Sonography for

Trauma

GB.....Gall Bladder

GCS.....Glasgow Coma Scale

HIDAHepatobiliary Iminodiacetic

HU Hounsfield Units

ICD.....International Classification of Diseases

ISS..... Injury Severity Score

IVC.....Inferior Vena Cava

LHV.....Left Hepatic Vein

MHV Middle Hepatic Vein

MRI......Magnetic Resonance Imaging

NISSNew Injury Severity Score

NOMLI....Non-operative Management of Liver Injuries

OIS Organ Injury Scale

OISC Organ Injury Scaling Committee

RHV...... Right Hepatic Vein

RTS...... Revised Trauma Score

RR..... Respiratory rate

SATE.....Selective arteriography and transcatheter embolization

SBP.....Systolic Blood Pressure

SMVSuperior Mesenteric Vessels

SOFA.....Sequential organ failure assessment

SIRS......Systemic Inflammatory Response Syndrome

WBC......White Blood Cell

Introduction

Abdominal trauma is a major cause of death. Nearly 40% of deaths from abdominal trauma are due to blunt trauma caused primarily by motor vehicle accidents. In these circumstances, abdominal trauma is often associated with head, chest, and extremity injury. Delay in diagnosis and treatment is a major contributing factor to mortality, which is often due to hemorrhage, sepsis, and multiple organ failure. (Gastrointestinal Surgery., 2006).

Hepatic injuries are one of the most common abdominal injuries following either blunt or penetrating trauma. CT scanning has revolutionized the treatment algorithm for these patients. The majority of patients are successfully treated with nonoperative management, but surgeons should have a clear understanding of the indications for operative intervention. An array of techniques including operative, interventional, and endoscopic, are often required for management of advanced grade hepatic injuries. (Clay C. Cothren et al., 2008).

Severe hepatic injuries require surgical intervention due to hemodynamic instability. Low-grade injuries can be managed nonoperatively with excellent results, while patients with hepatic trauma with associated organ injuries require surgery, because they continue to have significantly higher mortality. (Stavros Gourgiotis, etal., 2007).

To manage severe liver trauma (American Association for the Surgery of Trauma grade III to grade V), procedures such as packing of the laceration with omentum, hepatectomy or direct control of bleeding vessels within the liver substance by means of the Pringle maneuver, selective hepatic artery ligation, retrohepatic caval repair with total hepatic vascular occlusion, and perihepatic packing were selected and combined based on the specific injury. (Jing-mou Gao, et al., 2004).

During the past 2 decades, management of blunt hepatic injuries has changed dramatically. Nonoperative management of hemodynamically stable patients is now the standard of care. Successful nonoperative management of splenic injuries, the high rate of nontherapeutic laparotomies with associated complications in patients with liver injuries, the refinement of computed tomographic (CT) scanning, and more aggressive use

of interventional radiology have all contributed to this dramatic change. (Kozar, Rosemary A, et al., 2006).

Although the liver is the abdominal organ most commonly injured after blunt trauma, the majority of injuries are relatively minor. Operative management of these patients often results in a nontherapeutic exploration because the liver usually has stopped bleeding. Operative management of the more severe liver injuries, however, is associated with significant morbidity and mortality. (Martin A. Croce, et al., 1995).

Aim of the work

The aim of the work is to evaluate the non-operative management of blunt hepatic trauma regarding the prognosis and benefits and risks.

Surgical anatomy of the liver