Relationship Between Peri-coronary Epicardial Adipose Tissue Volume and Coronary Atherosclerotic Burden

A Thesis Submitted for Partial Fulfillment of Doctorate Degree of Cardiovascular Medicine

By

Mohamed Hassan Elsayed Mohamed DaoudM.B.B.Ch, M.S.c

Supervised by

Hussien Hassan Rizk MD

Professor of Cardiology, Cairo University

Sir. Magdi Habib Yacoub FRS

Professor of Cardiothoracic Surgery, Imperial College, London

Fatma Ahmed ElMogy MD

Professor of Clinical & Chemical Pathology, Cairo University

Karim Said Mostafa MD

Assistant Professor of Cardiology, Cairo University

Faculty of Medicine Cairo University 2013

Acknowledgments

In these few lines, I would like to express my deepest gratitude to *Prof. Sir. Magdi Yacoub* for his valuable guidance and meticulous supervision throughout the course of conducting this research.

I am particularly indebted to *Prof. Hussien Rizk, Prof. Karim Said*, and *Prof. Fatma ElMogy* for their patience and valuable help in planning and conducting this research. The idea of undertaking this research was originally Dr. Karim' idea. Special thanks to him for his sincere help and support in completing this research.

I would like to thank *Dr. Mohamed Donia and Dr. Mohamed Elhoseini* who have assisted me greatly in conducting and interpreting the MRI studies in this research.

Last but not least, I would like to present this work to my wife and my parents who supported me a lot and without them the completion of this work would have not been possible.

Mohamed Hassan

Abstract:

Background

Epicardial adipose tissue (EAT) is a complex endocrine organ that express a variety of inflammatory mediators which may contribute to the pathogenesis of coronary artery disease (CAD). Resistin is a novel adipokine that has been linked to inflammation and atherosclerosis. No data exist regarding the relation between serum resistin, EAT volume, and CAD.

Purpose

To investigate the relation between serum resistin, EAT volume and coronary atherosclerotic burden.

Methods

The study recruited 32 male patients with stable angina pectoris and angiographic evidence of significant (≥ 50%) coronary stenosis (median age: 54 y, body mass index "BMI" 28 kg/m², 14 diabetes, 20 hypertension, 19 smoking). Eleven agematched healthy male volunteers served as control group. All patients were not on statins. EAT volume indexed to body surface area (EAT-i volume) was quantified by cardiac magnetic resonance (CMR). Coronary artery calcium (CAC) score and plaque volume were measured by multidetector computed tomography. Serum levels of lipoproteins, adiponectin, leptin, and resistin were measured.

Results

Both groups were similar in terms of BMI, waist hip ratio, and serum lipoproteins levels. EAT-i volume (57.1 vs. 24.5 cm³/m², p<0.001) and serum resistin (7.5 vs. 6.0 ng/ml, p=0.017) were significantly higher in CAD patients than control group. EAT-i volume showed significant positive linear correlations with serum resistin (r=0.69, p<0.001), CAC score (r=0.51, p=0.003), and coronary plaque volume (r=0.45, p=0.01) in CAD patients. Serum resistin showed significant positive linear correlation with CAC score (r=0.37, p=0.05). In CAD patients, EAT-i volume was significantly increased among resistin tertiles (66.2 vs. 58.2 vs. 38.5, p=0.001). No significant correlations were detected between EAT-i volume and serum adiponectin as well as leptin levels. In a multivariate regression analysis, EAT-i volume was the most powerful predictor of CAC score compared to other conventional risk factors for CAD [exp(B)=12.0, 95% CI=4.9 – 19.1, p=0.002]. Serum resistin was independent predictor of increased EAT-i volume [exp(B)=3.16, 95% CI=1.35 – 4.98, p=0.001].

Conclusions

Epicardial adipose tissue volume is independently associated with coronary atherosclerotic burden in stable coronary artery disease patients. Resistin may provide a possible mechanistic link between epicardial adipose tissue and coronary atherosclerosis

Key word:CAD-EAT- Peri-coronary- ACS-ECG

Table of Contents

Title	Page
Table of Tables	4
Table of Figures	6
Abbreviations & Acronyms	9
Introduction	12
1.1. Epicardial Adipose Tissue: Anatomic, Biochemical & Functional Characterisctics	13
1.2. Quantification of Epicardial Adipose Tissue	28
1.3. Potential Relevance of Epicardial Adipose Tissue to Cardiovascular Diseases.	37
1.4. Epicardial Adipose Tissue, Hepatic Fat, and Atherosclerosis	46
Aims of the work	51
Patients and Methods	52
Results	72
Discussion	90
Conclusion	107
Limitations	111
Summary	113
References	117
Master Table	i - xi
Arabic Summary	۲،۱

Table of Tables

Table	Title	Page
Table 1	Known or Attributed Physiological and Pathophysiological Functions of EAT	18
Table 2	Factors Secreted by Adipose Tissue	21
Table 3	Effects of Statins on Circulating Adipokines	27
Table 4	Relation between MDCT-measured EAT and the Extent of CAD	41
Table 5	CMR Studies of EAT	43
Table 6	Relation Between EAT, Hepatic Fat, and CV Diseases	49
Table 7	EAT as a Predictor of Metabolic Syndrome and NAFLD	50
Table 8	Intraclass Correlation Coefficient (ICC)	71
Table 9	Reasons Behind Exclusion of Screened CAD Patients from Study	74
Table 10	Demographics and Clinical Characteristics of CAD and Contol Groups	74
Table 11	Serum Adipokines, Lipoproteins, and HOMA-IR in CAD and Control Groups	75
Table 12	CIMT in CAD and Control Groups	75
Table 13	Coronary Plaque Characterisctics using MDCT	76
Table 14	CMR Measurements of Left Ventrcicular Volumes and Mass in Both Study Groups	76
Table 15	MRI Measurements of EAT Volume and Hepatic Fat Fraction in Both Study Groups	77
Table 16	Bivariate Correlations Between EAT volumes and Coronary Plaque Parameters in CAD patients	78

Table 17	Bivariate Correlations Between Segmental Peri-coronary EAT volume and Coronary Plaque Burden in the Corresponding segment	79
Table 18	Multivariate Regression Analysis for Prediction of CAC score in CAD Patients	83
Table 19	Multivariate Regression Analysis for Prediction of CAC score > 400 in CAD Patients	83
Table 20	Independent Predictors of CIMT in CAD Patients: EAT Volume vs. Conventional CV Risk Factors	85
Table 21	Independent Predictors of CIMT in CAD Patients: EAT Volume vs. Other Indices of Adiposity	85
Table 22	Univariate Predictors of Increased EAT Volume in CAD Patients	86
Table 23	Bivariate Correlartions Between EAT Volume and Other Indices of Adiposity in CAD Patients	87
Table 24	Bivariate Correlations Between EAT Volume and Serum Lipoprotein and Adipoikines Levels in CAD Patients	87
Table 25	Comparison of EAT Volume and Other Indices of Adiposity Among Resistin Tertiles	88
Table 26	Multivariate Regression Analysis for Prediction of EAT Volume in CAD Patients	88
Table 27	Multivariate Regression Analysis for Prediction of Peri-coronary EAT Volume in CAD Patients	89
Table 28	Relation Between Echocardiographic EAT Thickness, CMR-measured EAT Volume, and Coronary Atherosclerotic Burden in CAD Patients	89

Table of Figures

Figure	Title	Page
Figure 1	Ultrastructure of Adipose Tissue	14
Figure 2	Distribution of Cardiac Adipose Tissue	15
Figure 3	Potential Physiological, Pathophysiological Mechanisms and Vsocrine/paracrine Pathways of EAT	20
Figure 4	Adiponectin Expression in EAT	24
Figure 5	Expression of Resistin and Adiponectin mRNA of Omental, Abdominal Subcutaneous, and Gluteal Relative to EAT	26
Figure 6	Echocardiographic Identification of Epicardial and Paracardial AT	29
Figure 7	Linear Regression Analysis Between Echocardiographic and CT-measured EAT thickness	30
Figure 8	Agreement Between Echocardiographic EAT Thickness and MRI-measured abdominal VAT	30
Figure 9	Variability of Measurement of Echocardiographic EAT Thickness in Parasternal Long Axis View	32
Figure 10	Examples of (A) Normal, (B) Moderately Increased, and (C) Markedly Increased EAT on Axial CT Images of The Heart	34
Figure 11	CMR Quantification of EAT Volume in a Healthy Control with Normal EAT Volume (panel A) and in a Heart Failure Patient with Reduced EAT Volume (Panel B)	36
Figure 12	Association Between EAT Thickness and Severity of CAD	38
Figure 13	Box-plot of EAT Volume According to the Presence and Type of Coronary Atherosclerotic Plaques	40
Figure 14	Box-plot of EAT Volume and Severity of Myocardial Perfusion Abnormality on PET	42
Figure 15	Event Free Survival by Quartiles of EAT	42

Figure 16	Macroscopic Appearance of EAT in a Normal Heart (A,B) and in Hypertrophic Heart (C,D)	44
Figure 17	Possible Mechanisms Leading to Cardiovascular Disease in Patients With Nonalcoholic Fatty Liver Disease	46
Figure 18	CIMT in Patients With Nonalcoholic Fatty Liver Disease	48
Figure 19	Echocardiographic Measurement of EAT Thickness in Parasternal long axis (a) and Parasternal Short Axis (b) Views.	59
Figure 20	CMR Quantification of EAT Volume: Manual tracing of EAT area in four chamber view	62
Figure 21	CMR Manual Tracing and Measurement of the Area of coronary Arteries in Each Slice.	63
Figure 22	CMR Measurement of Segmental Peri-coronary EAT Area Around RCA (a) and LCX Artery (b)	63
Figure 23	Quantification of Fat Fraction in Liver Segment 8 (a), Liver Segment 5 (b), Spleen (c), and Back Muscles "at Lower Pole of kidney" (d) using Chemical Shift Imaging.	65
Figure 24	Study Population in Flow Chart	73
Figure 25	Comparison of EAT Volume and Hepatic Fat Fraction in Both Study Groups	77
Figure 26	Correlations Between EAT-i Volume and CAC Score and Coronary Plaque Volume (A, B). Correlations Between Peri-coronary EAT Volume and CAC Score and Coronary Plaque Volume (C, D)	79
Figure 27	Coronary Atherosclerotic Plaque Parameters in CAD Patients Based on Peri-coronary EAT Volume	
Figure 28	Comparsion of Segmental Peri-coronary EAT Volume Based on the Presence or Absence of Plaques in CAD Patients.	81
Figure 29	Comparsion of Segmental Per-coronary EAT Volume Based on Severity of Plaque Stenosis.	82

Figure 30	Comparison of segmental Peri-coronary EAT Volume Based on Plaque Type	82
Figure 31	Bivariate Correlation Between EAT-i Volume and CIMT in CAD Patients	84

Abbreviations & Acronyms

ACS: Acute coronary syndrome

AF: Atrial fibrillation

ALT: Alanine transaminase

AST: Aspartate transaminase

AT: Adipose tissue

BP: Blood pressure

BMI: Body mass index

BSA: Body surface area

CABG: Coronary artery bypass grafting

CAC: Coronary artery calcium

CAD: Coronary artery disease

CCSC: Canadian cardiovascular society class

CCTA: Coronary computed tomography angiography

CHF: Congestive heart failure

CIMT: Carotid intima media thickness

CMR: Cardiac magnetic resonance

CTO: Chronic total occlusion

CV: Cardiovascular

EAT: Epicardial adipose tissue

EAT-i: Epicardial adipose tissue indexed to body surface area

ECG: Electrocardiogram

ELISA: Enzyme linked immune sorbent assay

FDA: Food and drug administration

FFA: Free fatty acids

HOMA-IR: Homeostatic model assessment for insulin resistance

HRP: Horseradish peroxidase

Hs-CRP: High sensitivity C reactive protein

ICC: Intraclass correlation coefficient

IR: Insulin Resistance

LAD: Left anterior descending

LCX: Left circumflex artery

LDL: Low density lipoprotein

LV: left ventricle

MAb: Monoclonal antibody

MCP: Monocyte chemotactic protein

MESA: Multi-Ethnic Study of Atherosclerosis

MDCT: Multidetector computed tomography

MI: Myocardial infacrtion

MRI: Magnetic resonance imaging

NAFLD: Non alcoholic fatty liver disease

PAT: Pericardial adipose tissue

PET: Positron emission tomography

RCA: Right coronary artery

RV: right ventricle

SI: Signal intensity

SIP: Signal intensity on In phase image

SOP: Signal intensity on Out of phase image

TFE: Turbo flash echo

TNF-α: Tumor necrosis factor-α

UCP1: uncoupling protein 1

VAT: Visceral adipose tissue

VLDL: Very low density lipoprotein

WHR: Waist hip ratio

Introduction

1.1. Epicardial Adipose Tissue: Anatomic, Biochemical & Functional Characteristics

Our perception of adipose tissue (AT) has changed considerably over the last decades with the dramatic increase in the incidence of obesity and obesity-related comorbidities. AT is a loose association of lipid-filled cells called adipocytes, which are held in a framework of collagen fibers (Figure 1). In addition to adipocytes, AT contains stromal–vascular cells, including fibroblastic connective tissue cells, leukocytes, macrophages, and preadipocytes (that are not yet filled with lipid), which contribute to structural integrity and constitute around 50% of its total cellular content.

AT is increasingly recognized as a vital complex endocrine organ which generates various bio-active molecules with profound local and systemic effects ^{1,2}. Although numerous population-based studies have shown a clear relationship between body mass index (BMI) "the most common index of adiposity used in clinical practice" and the documented comorbidities associated with excess body fatness^{3–5}, obesity has remained a puzzling condition for clinicians because of its remarkable heterogeneity⁶. The regional distribution rather than the absolute weight burden of AT plays an important role in the development of metabolic and cardiovascular (CV) diseases. Peripheral subcutaneous adiposity exhibits an independent antiatherogenic effect ⁷, whereas accumulation of visceral AT (VAT) associates with increased prevalence of insulin resistance (IR), metabolic syndrome, and related CV complications ⁸.

Epicardial adipose tissue (EAT) is a particular form of VAT deposited around the heart and found in considerable quantities around subepicardial coronary arteries. There is a growing evidence suggests the physiological and metabolic importance of EAT, especially in the association of metabolic and CV risk profiles and the pathogenesis of atherosclerotic coronary artery disease (CAD) ^{9–12}.

Figure 1: Ultrastructure of AT. Images of AT from outside the aortic valve and aorta at (a) low (\times 50) and (b) high (\times 500) magnifications obtained by scanning electron microscopy. The images show the 3D morphology of the adipose cells, which are rounded and bulging with adipose in an extracellular matrix. (**c,d**) The internal structure of adipocytes obtained by transmission electron microscopy. Each image shows an adipocyte full of fat globules. Lipid droplets in adipocytes: 1 µm-thick resin sections stained with toluidine blue show (**e**) multilocular adipocytes of brown AT, and (**f**) unilocular adipocytes of white adipose tissue with a characteristic signet-ring appearance (adapted from reference⁶)

Anatomic Characteristics of Epicardial Adipose Tissue

The concept of cardiac adiposity, as a new CV risk factor and marker is rapidly emerging^{13,14}. The heart is covered by more or less abundant AT, particularly on its right side. EAT is the true visceral fat depot of the heart^{9,15}. It is located between the myocardium and visceral pericardium around both ventricles of the heart, with variable extent and distribution patterns^{9,14} (Figure 2). EAT is commonly found in the atrioventricular and interventricular grooves and along the major epicardial coronary arteries ⁹. Minor foci of fat