Evolution of Arterial grafts Used In Coronary Artery Bypass Surgery Essay

Submitted for the partial fulfillment of the master degree In general surgery

BY

Mohamed Abdel Rehim M. Abouzaid

M.B.B.Ch

Prof.Dr.Khaled Aly Gawdat
Professor of general surgery

Ain Shams University

Prof.Dr. Ahmed Abdel Aziz Ibrahim
Professor of Cardio-Thoracic surgery

Ain Shams University

Dr.Al Sayed Mahmoud Salem
Lecturer of Cardio-Thoracic surgery
National Heart Institute

Faculty of medicine
Ain Shams University
2013

التطورات في الوصلات الشريانية المستخدمة في جراحات الشرايين التاجية

رسالـــة مـقــدمـــة من

الطبيب/ محمد عبد الرحيم محمد أبوزيد بكالوريوس الطب و الجراحة

توطئة للحصول على درجة الماجستير في الجراحة العامة

تحت اشراف الأستاذ الدكتور/ خالدعلي جودت أستاذ الجراحة العامة كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ أحمد عبد العزيز أستاذ جراحة القلب والصدر كلية الطب – جامعة عين شمس

الدكتور/ السيد محمود سالم مدرس جراحة القلب و الصدر معهد القلب القومي

> كلية الطب جامعة عين شمس ٢٠١٣

ACKNOWLEDGEMENT

All thanks are due to **God.**

Many thanks to **Prof. Dr. Khaled Aly Gawdat**, Professor of general surgery, Faculty of medicine, Ain Shams University for his encouragement, advice and great support.

I would like to express my deepest gratitude to my **Prof. Dr.Ahmed Abdel Aziz Ibrahim**, Professor of cardio-thoracic surgery, Faculty of medicine, Ain Shams University, for his advice and useful support.

I would like to thank **Dr. Al Sayed Mahmoud Salem**, Lecturer of cardiothoracic surgery, National
Heart Institute, for his very kind supervision, direction
and continuous help in all stages of this work.

Dedication

To my parents who gave and still giving all things without taking any thing.

To my grand father, the only one who I always wish to be like him.

To my uncle not only for his great support and continuous help during my studying years and all through life but also for his presence in my life.

To my professors and colleagues who gave me direction and advice.

Thanks to **Dr** Ahmed El Sheemy, lecturer of cardiothoracic surgery, National Heart Institute, for his advice, support and supervision to finish this work.

Abstract

Coronary artery disease (CAD) is one of the leading causes not only of morbidity but also of mortality worldwide. Coronary artery bypass grafting (CABG) is becoming the treatment of choice in increasing number of patients. The need for alternative conduits is growing to face the increasing number of patients with insufficient internal thoracic artery (ITA) conduit and due to multiplicity of occluded saphenous vein grafts. Many alternative arterial conduits have been discussed according to their biological and surgical characteristics. The superiority of arterial conduits to venous conduits is well documented.

Contents	Page
List of abbreviations.	
List of figures.	IV
List of tables.	VI
Introduction.	1
Chapter (1): Anatomy of the coronary arteries.	9
Chapter (2): Pathology of coronary artery disease.	25
Chapter (3): Arterial conduits.	53
Chapter (4): Internal thoracic artery	59
Chapter (5): Radial artery	91
Chapter (6): Right gastroepiploic artery	112
Chapter (7):Inferior epigastric artery	134
Chapter (8): Rarely used arteries	147
Chapter (9): Fate of the graft.	168
Chapter (10): Choice of the conduits.	174
Summary.	179
References.	184
Arabic Summary.	1

List of abreviations		
BITA	Bilateral Internal Thoracic Artery	
CABG	Coronary Artery Bypass Grafting Surgery	
CAD	Coronary Artery Disease	
CASS	Coronary Artery Surgery Study	
COPD	Chronic Obstructive Pulmonary Disease	
CPB	Cardiopulmonary Bypass	
CX	Circumflex Artery	
ECG	Electrocardiography	
EF	Ejection Fraction	
ET	Endothelin	
GEA	Gastroepiploic Artery	
HDL	High Density Lipoprotein	
ICA	Intercostal Artery	
IEA	Inferior Epigastric Artery	
IMA	Internal Mammary Artery	
IMV	Internal Mammary vein	
ITA	Internal Thoracic Artery	
LAD	Left Anterior Dessending Artery	
LCA	Left Coronary Artery	
LDL	Low Density Lipoprotein	
LIMA	Left Internal Mammary Artery	
LITA	Left Internal Thoracic Artery	
NYHA	New York Heart Association	
OM	Obtuse Marginal Artery	
PDA	Posterior Dessending Artery	
PDGF	Platelet Derived Growth Factor	
PTCA	Percutaneous Transluminal Coronary	
	Angiography	
PTEF	Polytetrafluoroethylen	
RA	Radial Artery	

RCA	Right Coronary Artery
RGEA	Right Gastroepiploic Artery
RIMA	Right Internal Mammary Artery
RITA	Right Internal Thoracic
SA	Splenic Artery
SAN	Sino Atrial Node
SVG	Saphenous Vein Graft
TXA2	Thromboxane A2

List of figures		Page NO
1-1	General view of the coronary arteries	11
1-2	Acute and obtuse margins of the heart	13
1-3	Coronary arteries and their main branches	13
1-4	Anatomy of the left. coronary artery	17
1-5	Specimen of the heart showing right dominance	23
1-6	Specimen of the heart showing left dominance	24
1-7	Specimen of the heart showing balanced pattern	24
2-1	The Pathogenesis of the Atherosclerotic Plaque	22
2-2	Atherosclerotic Plaque	22
2-3	cross section of diseased CA	23
2-4	Morphological effects of reperfusion following severe myocardial ischemia.	34
2-5	Atherosclerosis of SVG	38
2-6	Near normal morphology of ITA graft	39
4-1	Configuration of ITA grafts	49
4-2	anastomosis of ITA	50
4-3	Anatomy of ITA.	52
4-4	COURSE OF THE ITA FROM INSIDE THE CHEST.	54
4-5	Relations of ITA	54
4-6	Harvesting of ITA	56

4-7	Harvested ITA	57
4-8	Preparation of ITA pedicle	59
4-9	Division of ITA pedicle	60
4-10	Anatomic position of LITA pedicle	61
5-1	Arteries of the forearm	72
5-2	Arteries of the Upper Limb.	73
5-3	Allen test	77
6-1	End to side Right Gastro Epiploic Artery and Radial artery	87
6-2	Blood supply of the stomach	89
6-3	Required length of Right Gastro Epiploic Artery	94
7-1	Anatomy of inferior epigastric artery	101
7-2	Anastomosis of Inferior epigastric artey to circumflex artery	105
8-1	Course and relations of SA	110
8-2	Double bypass with SA to RCA	112
8-3	Triple bypass with SA toRCA	112
8-4	Anatomy of subscapular artery	138

	List of tables	
		Page no.
	Natural history of coronary artery	
	disease upon no. of stenosed vessels	
Table (1)		39
Table (2)	Left and right internal thoracic artery	56
	graft patency: ischaemia-directed	
	Observational data.	
Table (3)	types of arterial conduits	85

INTRODUCTION

Coronary artery disease remains the most common condition suffered by the patients who consult cardiologists and cardiac surgeons, and the practicing cardiac surgeon is confronted with no clinical question more often than "Is coronary bypass indicated in this patient?" [1].

The indications for operative myocardial revascularization have been well delineated and can be viewed as specific anatomic criteria such as left main coronary artery disease, multi-vessel coronary disease, and double-vessel coronary disease with proximal left anterior descending artery (LAD) involvement, and with or without physiological sequelae such as myocardial ischemia, myocardial infarction (MI), and left ventricular dysfunction [2].

Furthermore, an additional subset includes patients undergoing other cardiovascular surgery with coronary artery disease that would otherwise not indicate operative revascularization. In general, only coronary arteries with significant (greater than 70%) stenosis are bypassed, because graft patency is

otherwise severely limited by competitive native coronary flow [3].

Surgery for human atherosclerotic coronary artery disease (CAD) began in 1935, when Beck attached a pedicled graft of pectoralis muscle to the heart in an attempt to provide a new blood supply [4].

In 1951, Vineberg described the implantation of the internal thoracic artery (ITA) directly into the myocardium [5].

In the mid-1950s, Murray reported experimental studies of internal thoracic artery–coronary artery anastomosis [6].

In the late 1950s, Bailey described direct coronary endarterectomies [8].In 1953; Gibbon successfully used cardiopulmonary bypass clinically for intra-cardiac surgery [7]. In 1958, Longmire described a patient in which a coronary endarterectomy was attempted, but the coronary artery disintegrated. In a desperate attempt to reconstruct the coronary, the internal thoracic artery was harvested and anastomosed to the coronary artery [11].

In 1961, Senning described a patch angioplasty of a stenotic coronary artery [9]. In 1962, Sohns and Shirey reported the development of coronary angiography, which would subsequently permit guided interventions for distinct coronary stenosis [10]

In 1962, Sabiston reported the first aorto-coronary bypass, but this patient died in the early postoperative period of a cerebro-vascular accident [12].

Garrett and DeBakey are credited by some with performing the first successful aortocoronary bypass in 1964, although this was not reported until 1973 [13]. In 1964, Kolesov in Leningrad performed the first planned anastomosis between the left internal thoracic artery and the left anterior descending artery [14]. In 1968, Favolaro reported the first large series of coronary artery bypass graft patients [15].

From the late 1960s and early 1970s, aortocoronary venous bypass grafting, together with internal thoracic artery to coronary artery bypass grafting, grew rapidly in popularity to become one of the most commonly performed major operations today [16].