Phenotypic Characterization of Extended Spectrum Beta Lactamase in Clinical Isolate of Klebsiella Species Isolated In Intensive Care Unit

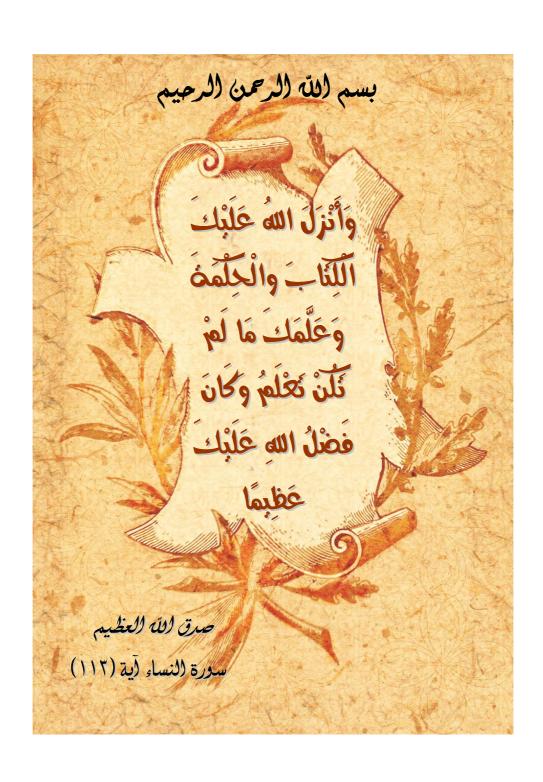
Thesis

Submitted For Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Dalia Ahmed Ahmed Farh (M.B., B.Ch) Mansoura University

Supervised by


Professor/ Ibrahim Khalil Ali

Professor of Clinical & Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Rania Ali Ammar

Assistant Professor of Clinical & Chemical Pathology Faculty of Medicine Ain Shams University

Faculty of Medicine - Ain Shams University
2013

First and foremost, thanks to Allah, to whom I related any success in achieving any work in my life.

Words can never express my deepest gratitude and sincere appreciation to **Professor Ibrahim Khalil**Mi, Professor of Clinical & Chemical Pathology, Faculty of Medicine, Ain Shams University, for his kind encouragement and constructive guidance and providing me much of his time and effort.

I wish to express my deep thanks **Dr. Rania Ali**Ammar, Assistant Professor of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her patience
and faithfully fatherly advices which were very valuable.

My heartful thanks to my family; my father, my mother, my Husband and my two doughters for their continuous support and loving. They encouraged me whenever I felt discouraged or disappointed. They helped me to discover my inner power and strength during hard times.

Thank you all for being wonderful Dalia Ahmed Farh

List of Contents

Title	Page No.
Introduction	1
Aim of the Study	3
Review of Literature	
Klebsiella Species	4
Diseases Caused by Klebiella in ICU	9
Extended-Spectrum Beta Lactamases	20
Laboratory Detection of ESBLS	34
 Treatment Options for ESBL-Producers 	55
Materials and Methods	68
Results	
Discussion	
Summary	102
Conclusion	
Recommendations	104
References	
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Risk factors associated with infection colonization with ESBL-producing pathoge	
Table (2):	Different extended-spectrum β-lactan families	
Table (3):	CLSI (2008) screens for <i>E.coli</i> , <i>Klebsiella</i> and <i>P.mirabilis</i>	
Table (4):	CLSI (2008) ESBL confirmatory tests for E Klebsiella spp., and P. mirabilis	•
Table (5):	Contact precautions for patients infected colonized by ESBL-producing organism recommended by the Center for Discontrol and Prevention	s as eases
Table (6):	Reading table of biochemical reaction microscan panel.	n of
Table (7):	Distribution of isolated organisms as clinical specimens.	
Table (8):	Correlation of isolated organisms with s patients.	ex of
Table (9):	Correlation study between DDST Microscan as a reference method:	
Table (10):	Diagnostic Validity Test to evaluate DDS ESBL using Microscan as a reference meth	
Table (11):	Correlation study between E test Microscan as a reference method:	
Table (12):	Diagnostic Validity Test to evaluate E test ESBL production using Microscan a reference method:	as a
Table (13): C	Correlation study between DDST and E-Test	
Table (14):		l. as

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	Structure of an oxyimino-amino-thiazolyl cephalosporin	21
Fig. (2):	Pivotal amino acid positions in TEM, SHV, and CTX-M ESBLS	26
Fig. (3):	Amino acid substitutions in TEM ESBL derivatives.	29
Fig. (4):	Amino acid substitutions in SHV ESBL derivatives	30
Fig. (5):	CLSI ESBL confirmatory disk test with ceftazidime (CAZ), alone and in combination with clavulanate (CAZ/CLA), and cefotaxime (CTX), alone and in combination with clavulanate (CTX/CLA)	40
Fig. (6):	Detection of ESBL production in DD approximation tests	43
Fig. (7):	Detection of ESBL carriage with an E-test ESBL strip	46
Fig. (8):	CLSI ESBL confirmatory disk test results for an $E.coli$ isolate producing both an ESBL (CTX-M-14) and an AmpC β -lactamase (CMY-2)	53
Fig. (9):	Detection of ESBL-SHV-5 in a strain of <i>Klebsiella pneumoniae</i> producing the metallo-β-lactamase VIM-1	54
Fig. (10):	Double disc synergy test	74
Fig. (11):	E test	75
Fig. (12):	Distribution of isolated organisms among clinical specimens	83

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (13):	Correlation study between DDST Microscan as a reference method	
Fig. (14):	Diagnostic Validity Test to evaluate Differ ESBL using Microscan as a referent method:	ence
Fig. (15):	Correlation study between E test Microscan as a reference method	
Fig. (16):	Diagnostic Validity Test to evaluate E for ESBL production using Microscan reference method	as a
Fig. (17):	Correlation study between DDST and Test	
Fig. (18):	Accuracy rate of DDST for both sensit	
Fig. (19):	Accuracy rate of Microscan for sensitivity and specificity:	
Fig. (20):	Accuracy rate of E test for both sensit and specificity:	
Fig. (21):	Comparison between amino. and qunio regards antibiotics sensitivity	

List of Abbreviations

Abb.	Full term
ACT-1	AmpC resistance in association with ESBL production
AMC	Amoxicillin/Clavulanate
AmpC	Ambler class C enzymes
Arg	Arginine residue
ASC	Active surveillance cultures
Asp	Aspartine residue
BSAC	British Society for Antimicrobial Chemotherapy
CAMHB	Cation adjusted Muller-Hinton broth
CAZ	Ceftazidime
CAZ/CLA	Ceftazidime in combination with clavulanate
CLSI	The Clinical Laboratory Standards Institute
CMT-1 to 4	Complex Mutants of TEM-1 to 4
CPD	Cefpodoxime
CRO	Ceftriaxone
CT	Cefotaxime in E-test
CTL	Cefotaxime with clavulanate in E-test
CTX	Cefotaxime
CTX/CLA	Cefotaxime in combination with clavulanate
DD	Double Disk test
DDS	Double disk synergy
E.coli	Escherichia coli

EARSS European Antibiotic Resistance Surveillance

System

ESBL Extended-spectrum β -lactamase

ESBL-E Extended-spectrumβ-lactamase-producing

E.coli

ESBL-EK Extended-spectrumβ-lactamase-producing

E.coli and klebsiella spp.

ESBL-K Extended-spectrumβ-lactamase-producing

klebsiella spp.

ESCMID European Society of Clinical Microbiology

and Infectious Diseases

FEP Cefepime

Glu Glucine residue
Gly Glycine residue

GNB Gram negative bacilli

His Histadine residue

ICU Intensive care units

IDSA Infectious Diseases Society of America

K.pneumoniae Klebsiella pneumoniae

LIA Lysine Iron Agar

Lys Lysine residue

MBLs Metallo β-lactamases

MDR Multi drug resistance

MDRO Multi drug resistance organisms

MIC Minimal inhibitory concentration

MYSTIC Meropenem Yearly Susceptibility Test

Information Collection

P.mirabilis Proteus mirabilis

PCR Polymerase chain reaction

PM Cefepime in E-test

PML Cefepime with clavulanate in E-test

Ser Serine residue

SFM Société Française de Microbiologie

Spp Species

Thr Theronine residue

TSB Tryptone soya broth

TSI Triple Sugar Iron Agar

TZ Cetazidime in E-test

TZL Cetazidime with clavulanate in E-test

UTI Urinary tract infection

VAP Ventilator associated pneumonia

INTRODUCTION

ulti-drug resistant gram negative bacilli belonging to the family enterobactericae have been increasingly responsible for many types of infection in hospitals in many countries (Rashid, 2010).

Klebsiella spp. constitutes the majority of these pathogens. Resistance to klebsialla pneumonaie extended spectrum beta lactmase antibiotics is commonly mediated by B. lactamases (ESBL) (Vinue et al., 2008).

ESBLs are calvulonate susceptible enzymes capable of hydrolyzing oxi-imino cephalosporins and monobactams but not cephamycins & carbapenems, these enzymes are originally observed in Escherichia coli and klebsiella spp. ESBL production has now been documented in other gram negative bacilli including enterobacter spp., proteus mirabilis and providentia steratii (Messai et al., 2008).

Because infection with ESBL producing organisms are often not adequately covered with empirically given antibiotics, the proper choices of antibiotic therapy and infection control measures depend upon early and accurate ESBL detection, it is therefore pivotal to have a rapid and sensitive laboratory assay (Pitout and Laupland, 2008).

ESBL-produsing micro-organisms exhibit high level of resistance to benzyl penicillin & narrow spectrum

cephalosporins. The MICS for aztreonam and expandedand spectrum, broad spectrum, fourth generation cephalosporin e.g (cefpiame, cefepime) vary greatly, because the various mutations offer different phenotypic expression ESBL-producing resistance, therefore, posses problem for in vitro susceptibility testing, first because of limited number of cephalosporins routinely used in the laboratory and second because the MIC may not reach the (NCCLS) break points for resistance when the standard inoculum of 105 CFU/ml is used. Nosocomial outbreaks are often caused by ESBL producing isolates, particularly in intensive care unit, they result from clinical transmission of epidemic isolate and/or the horizontal transfer of resistance genes (Messai et al., 2008).

Therefore, it is necessary to use special ESBL avoid the risk reporting detection tests to susceptibility to penicillins, cephalosporins and aztreonam. Several phenotypic methods has been used for ESBL detection (ESBL H tests, combination discs, double disc synergy test, cloxacillin centering Muller Hinton Agar & cica-Beta test), also semi automated microbiology system have been used for ESBL detection as phoenix automated microbiology system (BD, Diagnostic systems, spartus, MD), VITEK 2 system (Bioreueux Marcy L'Etoile, Enarce) and the Microscan walk away-96 system (Dade behring, Inc, west sacramento, CA) using routine testing panel (David et al., 2009).

AIM OF THE STUDY

valuation of the ESBL test and double disc synergy test as phenotypic method for detection of ESBL and comparing the results with microscan walk away-96 system in ESBL detection in klebsiella spp. isolated from intensive care unit.

Chapter (1)

KLEBSIELLA SPECIES

lebsiella was described in the mid 1880 and was named after the german microbiologist Edwin Klebs. The bacillus was also described by Carl Friedlander, and for many years the Friedlander bacillus was known as a cause of fatal pneumonia. However, for almost 70 years microbiologists were unable to separate Klebsiella from Aerobacter aerogenes (*Grimont et al.*, 1992).

Taxonomy

In 1971, Bascomb and colleagues used numerical taxonomy as a basis for calassifying klebsiella into six taxa. They retained k.pneumoniae, k.ozaenae, and k.rhinoscleromatis as separate groups whereas k.aerogenes, k.edwardsii and k.oxytoca were placed in a single taxon. Enterobacter aerogenes was included as a motile species of klebsiella named k.mobilis. Also, another group that remained unnamed was established. The introduction of DNA hybridization showed the limited relatedness between E.aerogenes and klebsiella. Thus researchers transfer E.aerogenes to new genus Enterobacter (*Brenner et al.*, 1972).

Furthermore, the DNA data showed that K.ozaenae, K.edwardsii, and K.rhinoscleromatis could not be separate from K.pneumoniae (*O'rskov*, 1984).

In 1981, the environmental species, K.planticola and K.terrigena, were added to the genus Klebsiella. They were originally called group K or K.trevisani and group L (for K.planticola and K.terrigena) respectively (*Bagley et al.*, 1981).

K.lebsiella ornitholytica was the last organism to be added to the genus Klebsiella. This is the only species of Klebsiella that decarboxylates ornithine. It was formerly known as ornithine-positive K.oxytoca or as the enteric group (*Janda at al.*, 1997).

Pathogenesis and virulence factors

Recent data from preclinical studies suggest a role for neutrophil myeloperoxidase and lipopolysaccharide-binding protein in host defense against K pneumoniae infection. Neutrophil myeloperoxidase is thought to mediate oxidative inactivation of elastase, an enzyme implicated in the pathogenesis of various tissue-destroying diseases. Lipopolysaccharide-binding protein facilitates transfer of bacterial cell wall components to inflammatory cells (*Won et al.*, 2011).