Update in Management of Blunt Abdominal Trauma

Essay Submitted for Partial Fulfillment of Master Degree

In

"General Surgery"

By

Ahmed Talha Ismail El Barky
M. B. B. Ch

Under Supervision of

Prof. Dr. Osama Ali El Atrash

Professor of General Surgery Faculty of Medicine Ain Shams University

A.Prof. Dr. Mohamed Mohamed Bahaa

Assistant Professor of General Surgery Faculty of Medicine Ain Shams University

Dr. Mohamed Abd El Monem Marzouk

Lecturer of General Surgery Faculty of Medicine Ain Shams University

Ain Shams University 2013

الطرق الحديثة لتشخيص وعلاج إصابات البطن الرضية

توطئة للحصول علي درجة الماجستيرفي الجراحة العامة!!

رسالة مقدمة من الطبيب / أحمد طلحه البرقى الطبيب الطبو الجراحة جامعة عين شمس تحت إشراف

أ.د./ أسامة على الأطرش

أستاذ الجراحة العامة كلية الطب _ جامعة عين شمس

أ.د. / محمد محمد بهاء الدين

أستاذ مساعد الجراحة العامة كلية الطب _ جامعة عين شمس

د. / محمد عبد المنعم مرزوق

مدرس الجراحة العامه كلية الطب _ جامعة عين شمس

Acknowledgment

"First of all thanks to ALLAH"

I would like to present my sincere thanks and appreciation to **Prof. Dr.Osama Ali El Atrash**, Professor of Surgery, Faculty of Medicine Ain Shams University, for his kind guidance, close supervision and constant encouragement, his worthy remarks are beyond my words of thanks

I would like to express my deepest gratitude and appreciation to Prof. Dr. Mohamed Mohmed Bahaa El Din, Assistant Professor of Surgery, Faculty of Medicine, Ain Shams University, who helped me by his remarkable guidance, meticulous supervision, and constant encouragement throughout this work.

I would also like to thank Dr. Mohamed Abd El Moniem Marzouk Lecturer of Surgery, Faculty of Medicine, Ain Shams University, for his precious time, active participation, great help and honest assistance to complete this work.

Last but not least I would like to express all my thanks and gratitude to my family for their support and help and pushing me forward all the time.

List of Abbreviations

AACT	American Association for the Coursess of
AAST	American Association for the Surgery of
	Trauma
ACS	Abdominal Compartmental Syndrome
ACS	American College of Surgeons
ACTH	Adreno Cortico Trophic Hormone
ADH	Anti Diuretic Hormone
ANP	Atrial Natriuretic Peptide
ARDS	Adult Respiratory Distress Syndrome
ATLS	Advanced Trauma Life Support
BAT	Blunt Abdominal Trauma
BHT	Blunt Hepatic Trauma
BMV	Bag-Mask Ventilation
BTLS	Basic Trauma Life Support
CBD	Common Bile Duct
CEUS	Contrast Enhanced Ultrasound
CNS	Central Nervous System
CT	Computed Tomography
CVP	Central Venous Pressure
DL	Diagnostic Laparoscopy
DPL	Diagnostic peritoneal Lavage
EAST	Eastern Association for the Surgery of
	Trauma
ERCP	Endoscopic Retrograde Cholangio-
	Pancreatography
FAST	Focused Assessment with Sonography for
	Trauma
GSC	Glasgow Coma Scale

HPF	High Power Field
HIDA	Hydroxyiminodiacetic acid
IAP	Intra-Abdominal Pressure
IVC	Inferior Vena Cava
IVU	Intravenous Urography
MRCP	Magnetic Resonance Cholangio-
	Pancreatography
MRI	Magnetic Resonance Image
MS-CT	Multislice computed tomography
MVC	Motor vehicle crash
NOM	Non Operative Management
NPA	Nasopharyngeal airway
OIS	Organ Injury Scale
OPA	Oropharyngeal airway
PTC	Percutaneous Transhepatic
	Cholangiography
PBD	Percutaneous Biliary Drainage
PSAE	Proximal splenic artery embolization
RTS	Revised Trauma Score
TSA	Total Serum Amylase
UPJ	Uretero-Pelvic Junction
VAC	Vacuum-Assisted Closure
VATS	Video-Assisted Thoracoscopic Surgery
WBC	White Blood Cell

List of Figures

Fig.	Title	Page
No.		No.
1	Functional division of the liver and of the liver	4
	segments according to Couinaud's nomenclature	
2	Transverse section in the abdomen	5
3	Anterior view of retroperitoneal viscera	9
4	(A,B,C) Four traditional anatomic abdominal divisions	12,13,14
5	US shows free fluid (blood) in hepatorenal space (i.e.	37
	Morrison's pouch)	
6	US shows free fluid (blood) the splenorenal recess	37
_		2=
7	US shows free fluid in pouch of Douglas (pelvis)	37
8	US shows pattern free fluid in the abdomen	39
9	(a) sagittal US image of the spleen	43
	(b) Contrast enhanced US (CEUS) of the spleen showing	
	hypoechoic area.	
	(c) contrast enhanced CT confirm lesion of spleen	
10	(a) CEUS of the liver with marked hypoechoic area; (b)	44
	contrast enhanced CT to confirm lesion.	
11	CT scan shows the amount of subcapsular haematoma	46
	grade III liver laceration	
12	CT scan shows associated contrast extravasation in grade	46
	IV splenic laceration	
13	Blood aspirated from the peritoneal cavity in DPL	55
14	DPL is performed through an infraumblical incision	56
15	Laparoscopy shows haematoma & bloody ascitis	61
16	Hepatic Arteriography shows haemobilia	66
17	ERCP shows extravasation of contrast from pancreatic	67
	duct injury	

18	vacuum assisted closure(VAC) of abdominal wound	75
19	MRI shows lt diaphragmatic injury with intrathorathic	80
	herniation of stomach and colon	
20	Exposure of the right hemidiaphragm	82
21	Reattachment of the diaphragm to a higher level	83
22	CT with intravenous contrast showing patient with grade IV liver laceration	88
23	CT shows active bleeding from liver parenchyma identified during the arterial phase	89
24	Hepatic necrosis after hepatic artery ligation or embolization	90
25	CT shows large haemoperitoneum managed conservatively	92
26	liver packs over a laceration of the right lobe	97
27	Atriocaval shunt and Venovenous bypass permits hepatic vascular isolation	100
28	Laparoscopy is most useful for lavage and evacuation of	105
	haematoma	
29	Two CT scans for two splenic injury patients	112
30	Proximal Splenic Angioembolization	114
31	Pancreatic transaction	119
32	ERCP image shows active extravasation of contrast material due to Pancreatic duct injury	120
33	A patient with pancreatic duct injury following placement of a stent using ERCP	121
34	Distal pancreatectomy just proximal to the level of injury with splenic preservation	125
35	Central pancreatectomy with Roux-en-Y loop pancreaticojejunostomy	126
36	Pyloric exclusion procedure accomplished by gastrojejunostomy	129
37	CT shows duodenal injury	132

38	CT shows duodenal haematoma with Percutaneous drain	132
39	Roux-en-Y duodenojejunostomy with the distal portion of	138
	the duodenum oversewn	
40	pancreaticoduodenectomy (Whipple procedure)	139
41	CT showing thickened loops of small bowel with extraluminal gas bubbles	147
42	Loop colostomy and presacral drainage for extraperitoneal rectal injury	156
43	Zones of retroperitoneum	157
44	CT scan of Grade II-III renal injury showing renal laceration and perinephric haematoma	160
45	CT scan of Grade IV renal injury with Delayed image shows urinary contrast extravasation	161
46	Steps of renal reconstruction	164
47	Surgical Repair of an Intraperitoneal Bladder Injury	166

List of Tables

Tab.	Title	Page
No.		No.
1	Incidence of different causes of BAT	16
2	Frequency of organ injury in BAT in adults	19
3	Components of the Revised Trauma Score	24
4	Estimated blood loss based on patient's	27
	initial presentation	
5	Show Glasgow Coma Scale	29
6	(AAST)-(OIS) for Diaphragmatic Injuries	81
7	(AAST)-(OIS) for Liver Injuries	87
8	length of hospitalization of patients	93
	managed non operatively from liver injuries	
9	Spleen Organ Injury Scale	110
10	Pancreas Injury Scale	123
11	Duodenal Injury Scale	136
12	Stomach injury scale	144
13	Small bowel injury scale	148
14	Grading of Injuries to Colon and Rectum	152
15	(AAST-OIS) for Injuries of the Kidney	159

List of Contents

Title		Page.
		No.
Introduction		1
Aim of the work		4
Chapter I	Basic anatomy of the abdomen	1
Chapter II	Pathophysiology of blunt abdominal	15
	trauma	
Chapter III	Management of poly-traumatized patient	21
Chapter IV	Diagnosis of blunt abdominal trauma	31
Chapter V	Different strategies for managing blunt	68
	abdominal trauma	
Chapter VI	Management of individual organ injury	77
Summary		167
References		304
Arabic Summary		329

INTRODUCTION

Trauma is a global public health problem and the dominant cause of morbidity and mortality, particularly in industrialized countries. Despite major improvements in the management strategies for multiple injured patients in recent decades, trauma remains the primary cause of death for young individuals under 45 years of age. 10% of deaths result from abdominal injuries.

(Minino et al., 2007)

Nearly three quarters of patients involved in road traffic accident and falling from heights associated with blunt mode of injury. Almost one fifth of these patients had abdominal injury .Blunt abdominal trauma (BAT) may result in injury to intra-abdominal organs by two discrete mechanisms of injury: direct compression forces and deceleration forces resulting in shearing forces. These forces occur either alone or combined.

(Jansen and Loudon, 2009)

The initial evaluation of a trauma patient consists of a rapid primary survey aimed at identifying and treating immediately life-threatening problems. Evaluation and decision making are far more difficult in blunt trauma than in penetrating trauma. More energy is transferred over a wider area during blunt trauma than from a gunshot wound or a stab wound. As a result, blunt trauma is associated with multiple widely distributed injures.

(Ryb et al., 2007)

The presentation of blunt abdominal trauma ranges from the dramatic (such as a patient involved in a road traffic collision or explosion, presenting with profound haemodynamic instability due to major haemorrhage) to the subtle, early signs of an otherwise well patient with a hollow viscus injury following relatively trivial and localized trauma. Both investigative and management strategies must take into account these widely different presentations, and their different clinical priorities.

(Jansen and Loudon, 2009)

Diagnosis of intra-abdominal injury and, equally importantly excluding injury by clinical examination is unreliable. The confirmation of the presence or absence of injury relies on the use of diagnostic procedures. Haematology and chemistry laboratory tests are of limited use in the management of the acutely traumatized patient. Clinicians should consider them adjuncts to diagnosis and not substitutes for clinical assessment in blunt abdominal trauma. (Isenhour and Marx, 2007)

Ultrasonography is the investigation of choice in haemodynamically unstable patients while CT (Computed Tomography) imaging is the diagnostic tool of choice in haemodynamically stable patients. CT scans can provide a rapid and accurate evaluation of the abdominal viscera, retroperitoneum and abdominal wall .Diagnostic peritoneal lavage (DPL) has a role as a second-line investigation in the diagnosis of hollow viscus injury, particulary in neurologically compromised patient. (Jansen et al., 2008)

Strategies for managing BAT range from non-operative management, to minimally invasive techniques such as angio-embolization, primary definitive surgery and damage control surgery .Nowadays conservative treatment is preferred in blunt abdominal trauma as 85%-98% of hepatic injuries and 60-80% of splenic injuries and virtually all renal injuries can be managed conservatively with success rates approaching 95%.

(Schroeppel and Croce, 2007)

Despite this development, a considerable number of patients with catastrophic intra-abdominal injuries will continue to require immediate and skilled surgical intervention combined with expert resuscitation.

(Jansen and Loudon, 2009)

The application of damage control to the trauma patient has come from the realisation that minimising surgery until the physiological derangement can be corrected is the best way of improving outcome.

(Loveland and Boffard, 2004)

AIM OF THE WORK

This work aims to highlight the updated and reasonable modalities of management of patients with blunt abdominal trauma, in order to improve the prognosis and decrease morbidity and mortality.