The surgical options for management of Type 1 Diabetes mellitus

Essay

Submitted For Partial Fulfillment of the Master Degree In General Surgery

By

Ahmed FathyElabdDlal

M.B. B.Ch.

Supervised by

Prof. Dr. Awad Hassan El-kial

Professor of General Surgery
Faculty of Medicine, Ain Shams University

Dr. Mohamed Mahfouz Mohamed

Lecturer of General Surgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

☐

سورة البقرة الآية: ٣٢

All braise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this essay, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Awad Hassan El-kial** Professor of General Surgery, Faculty of Medicine, Ain Shams University for his continuous encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to **Dr. Mohamed Mahfouz Mohamed,** Lecture of General Surgery, Faculty of Medicine-Ain Shams University who freely gave her time, effort and experience along with continuous guidance through out this work.

Ahmed Fathy Elabd Dlal

Contents

Subjects Page			
•	List of Abbreviations	I	
•	List of Tables	IV	
•	List of Figures	V	
•	Introduction	1	
•	Aim of the work	7	
•	Review of literature:		
•	Embryology, anatomy, histology of the pancrea	ıs8	
•	Physiology of the pancreas	33	
•	Diabetes mellitus type 1 and its complications	47	
•	Stem cells	59	
•	Pancreatic transplantation as surgical mana	agement	for
	T1DM	76	
•	Islet cells transplantation as surgical mana	agement	for
	T1DM	102	
•	The role of stem cells in management of T1DM	121	
•	Conclusion	142	
•	References	144	
•	Arabic summary		

List of Abbreviations

A1C : Glycated hemoglobin

ADA : American Diabetes Association

Anti-GAD : Antibodies to glutamic acid decarboxylase

ARCFH : Arbor Research Collaborative For Health

ASCs : Adult stem cells

BM : Bone Marrow

BM : Bone marrow

BMCs : Bone marrow cells

BMSCs: Bone marrow stem cells

BMT : Bone marrow transplantation.

CB-SCs: Human cord blood-derived stem cells

CCK : Cholecystokinin

CHD : Coronary heart disease

CITR : Collaborative Islet Transplant Registry

CLI : Diabetic critical limb ischemia

CT : Computed tomography

CVD : Macrovascular disease

DF : Diabetic foot

DR : Diabetic retinopathy

EPCs : Endothelial progenitor cells

ES : Embryonic stem

ESC : Embryonic stem cell

🕏 List of Abbreviations Z

FSCs: Foetal stem cells

GVHD : Graft-versus-host disease

Hb : Hemoglobin

HBMMSCs: Human bone marrow MSCs

hES : Human embryonic stem cells

HLA: Human leukocyte antigen

HSC : Adult hematopoietic stem cells

HSC: Haemopoietic Stem cell

HSCs: Hematopoietic stem cells

HSCT: Hematopoietic stem cell transplantation

hSCT: Haemopoietic Stem cell transplantation

HTRs : Gastrin-releasing peptide

ICA : Islet-cell antibodies

ICM : Inner cell mass

IDDM : Insulin-dependent diabetes mellitus

IDDM : Insulin-dependent diabetes mellitus

IPCs: Insulin-producing cells

Ips : Induced pluripotent stem

iPS : Induced pluripotent stem cells

IVF : In vitro fertilization

LDs : Living donors

MODY2 : Maturity-onset diabetes of the young

MRI : Magnetic resonance imaging

MSCs: Mesenchymal stem cells

🕏 List of Abbreviations Z

MSCs : Mesenchymal Stem Cells

MSCs : Mesenchymal stem cells

NEPECs: Non endocrine pancreatic epithelial cells

PAK : pancreas after kidney

PET : Positron-emission tomography

PET : Positron emission tomography

PP : Pancreatic polypeptide

PTA : pancreas transplant alone

PVD : Peripheral vascular disease

SC : Stem Cell

SCNT : Somatic cell nuclear transfer

SCT : Stem cell transplantation

SDF-1 : Stromal cell-derived factor 1

SPK: Simultaneous pancreas and kidney

transplantation

T1D : Type 1 diabetes

UCB : Umbilical cord blood

UCB-SCs: Umbilical cord blood stem cells

VIP : Vasoactive intestinal peptide

WHO : World Health Organization

🕏 List of Tables 🗷

List of Tables

Table No	Title	Page
Table 1:	Pancreatic Islet Peptide Products	33
Table 2:	Pancreatic Enzymes	41
Table 3:	Criteria for the diagnosis of diabetes.	50
Table 4:	Comparison between different types of	57
	insulin.	
Table 5:	Surgical Complications (Nonurologic)	89
	after Simultaneous Pancreas-Kidney	
	Transplantation in 237 Recipients	
Table 6:	Urologic Complications Related to	90
	Pancreas Transplant	

List of Figures

Figure No	Title	Page
Figure 1:	Organogenesis of the pancreas	11
Figure 2:	A Schematic overview of cell lineage	12
	determination during pancreas	
	development.	
Figure 3:	Pancreatic Regions &Parts	14
Figure 4:	Sagittal section through neck of	18
	pancreas	
Figure 5:	Anterior relationships of the pancreas	18
Figure 6:	Posterior relationships of the pancreas	19
Figure 7:	Relations of tail of pancreas to splenic	20
	parts	
Figure 8:	Variations of pancreatic ducts	21
Figure 9:	Variations in relation of common bile	23
	duct and main pancreatic duct at	
	duodenal papilla	
Figure 10:	Diagrammatic representation of the	24
	four sphincters making up the sphincter	
	of Boyden.	
Figure 11:	Major arterial supply to pancreas	25
	(anterior view). Left and right gastric	
	arteries not shown	
Figure 12:	Arterial supply to the pancreas	26
Figure 13:	Venous drainage of pancreas	27
Figure 14:	Lymphatic drainage of pancreas	28
Figure 15:	Anatomy of islet of Langerhans	30

🕏 List of Figures Z

Figure No	Title	Page
Figure 16:	Schematic diagram of the insuloacinar	32
	portal system	
Figure 17:	Possible mechanism for development	49
	of type 1 diabetes	
Figure 18:	Diabetic complications	51
Figure 19:	Diabetic foot ulcer	54
Figure 20:	Classification of stem cells	62
Figure 21:	Characteristics of Embryonic Stem	65
	Cells	
Figure 22:	Cord blood stem cells (CB-SCs)	67
	current clinical applications.	
Figure 23:	Strategies to obtain β cells from organ-	74
	specific stem or progenitor cells.	
Figure 24:	Overview of the process of iPS cell	75
	reprogramming.	
Figure 25:	Organ pancreas Procurement from	86
	Donor	
Figure 26:	Simultaneous pancreas-kidney (SPK)	87
	transplantation utilizing	
	ureteroneocystostomy	
Figure 27:	Isolated human islets stained red with	103
	dithizone.	
Figure 28:	The Bio-artificial pancreas	111
Figure 29:	the elements of stem cell-based	136
	strategies for the treatment of T1DM	

Introduction

Diabetes mellitus is metabolic disorder characterized by hyperglycemia resulting from defect in insulin secretion, insulin action or both (*American Diabetes Association*, 2009).

Diabetes mellitus (DM) is one of the most common chronic diseases in nearly all countries, and continues to increase in numbers and significance, as changing lifestyles lead to reduced physical activity, and increased obesity. The global prevalence of DM in the year 2010 among adults has been estimated to be 6.4%. It is estimated that by the year 2030, Egypt will have at least 8.6 million adults with diabetes (*Shaw et al.*, 2010).

Diabetes is the eleventh most important cause of premature mortality in Egypt, and is responsible for 2.4% of all years of life lost (YLL). Similarly, diabetes is the sixth most important cause of disability burden in Egypt (*NICHP*, *2004*).

The recent WHO Stepwise survey of non-communicable diseases in Egypt, showed the prevalence of known diabetes to be 6.0% (*Ellabany et al.*, 2006).

While hyperglycemia is the defining characteristic of diabetes, the underlying pathogenesis leading to hyperglycemia differs significantly among the various forms of the disease. Common to all is the presence of defects in insulin secretion and/or insulin action (*Gruessner et al.*, 2006).

Type 1 diabetes occurs when the pancreatic beta cells are destroyed and the patient develops profound or absolute insulin deficiency. Nearly all cases are autoimmune in origin. This form of diabetes accounts for approximately 5% to 10% of diabetes. The disease most often appears in childhood, but patients of any age may present with type 1 diabetes. A mixture of genetic and environmental factors are believed to lead to the autoimmune destruction that causes type 1 diabetes. Over the past 10 years the incidence of type 1 diabetes has increased (*Nghiem et al.*, 2008).

Type 2 diabetes occurs as the result of defects in both insulin secretion and insulin action. This form of the disease represents about 90% of prevalent cases of diabetes (*Zehrer et al.*, 2008).

Accordingly, the significant population already afflicted with this disease compounded by the increasing incidence worldwide will have a tremendous impact on future healthcare both domestically and globally. Estimates show that patients with T1DM treated with intensive medical management have six- to seven fold higher direct cost than age-matched nondiabetics (*Nakache et al.*, 2006).

Diabetes mellitus is generally treated with oral diabetic drugs and/or insulin. However, the morbidity and mortality associated with this condition increases over time, even in patients receiving intensive insulin treatment, and this is largely attributable to diabetic complications or the insulin therapy itself (*Nakache et al.*, 2006).

Diabetes mellitus is associated with devastating complications that increase both the mortality and morbidity of those suffering from the disease (*Nghiem et al.*, 2008).

Acute complications of the diabetis mellitus are Diabetic ketoacidosis: It is life threatening complication, it is called diabetic coma (*Kitabchi et al.*, 2004) and, Hypoglycemia: one of the most common complications for Diabetic patient receiving insulin or oral hypoglycemic agents (*Tattersall*, 2001).

Chronic complications of diabetes are best considered in three separate categories:

- 1-Microvascular (small vessel) disease, the clinical manifestations of which are diabetic retinopathy and diabetic nephropathy.
- 2- Neuropathy (involvement of both the peripheral and autonomic nervous system), the clinical manifestations of which can lead to various problems.

3- Macrovascular (larg vessel or atherosclerotic disease, the clinical manifestations of which are angina and myocardial infarctions, cerebrovascular accidents, and peripheral vascular disease (*Harmel and Mather*, 2004).

Diabetic neuropathy it is the most common neuropathy in developed countries and accounts for more hospitalizations than all the other diabetic complications combined (*Vinik and Mehrabyan*, 2004).

Foot ulcers that occur as a result of diabetic neuropathy are estimated to affect about 15% of all patients with diabetes at some point during their lifetime. In addition, approximately 85% of lower extremity amputations are preceded by a foot ulcer (*Zehrer et al.*, 2008).

The quest for a surgical treatment for T1DM first began more than a century ago with the likes of Oskar Minkowski and Josef von Mering at the University of Strasburg. It was not until 1966 when success was achieved by Kelly, who completed the first whole-organ pancreatic transplant at the University of Minnesota (*Kelly et al.*, 1966).

The goal of pancreas transplantation is to safely restore normoglycaemia by the provision of sufficient β cell mass. Transplantation of a pancreas, unlike liver, lung, and heart, is not a life-saving operation but it improves quality of life

because patients do not need to inject insulin on a daily basis or regularly monitor glucose concentrations with finger sticks, and hypoglycaemic unawareness is no longer a problem. The long-term advantages of this surgical procedure have to be balanced against the potential morbidity and mortality associated with diabetes, and the side effects from the long-term immunosuppression that is needed to prevent alloimmunity and autoimmune recurrence. The risk of immunosuppression is particularly relevant for recipients of pancreas transplant alone), since the only benefit of immune-suppression in this category is insulin free euglycaemia (*Latta*, 2005).

Technical refinements and the development of better immunosuppressants and better postoperative care have brought about marked improvements in patient and graft survival and a reduction in postoperative morbidity. Consequently, pancreas transplantation has become the curative treatment modality for diabetes, particularly for type I diabetes (*Hellerstrom et al.*, 2009).

Islet cell transplantation subsequently was initiated by Ballinger and Lacy, who, in 1972, were the first to report that isolated islets could reverse the effects of experimentally induced diabetes in rate (*Brillinger et al.*, 1972).