Acetabular Reconstruction with Bone Graft in Total Hip Arthroplasty

Thesis

Submitted for the partial fulfillment of M.D Degree in **Orthopaedics**

By

Mohamed Bakr Ibrahim

M.B., B.Ch, M.Sc., Orthopaedics

Under Supervision of

Prof. Dr./ Timour Fikry El-Husseini

Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University

Prof. Dr./ Osama Youssef Rabie

Professor of Orthopaedic Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr./ Timour Fikry El-Husseini,** Professor of Orthopaedic Surgery, Faculty of Medicine – Ain Shams University, for his constructive criticism, unlimited help and giving me the privilege to work under his supervision.

My most sincere gratitude is also extended to Assistant **Prof. Dr./ Osama Youssef Rabie,** Professor of Orthopaedic Surgery, Faculty of Medicine – Ain Shams University for his enthusiastic help, continuous supervision, guidance and support throughout this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Parents** and my **Wife** for pushing me forward in every step in the journey of my life.

Candidate

🖎 Mohamed Bakr Ibrahim

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
- Anatomy of the Acetabulum	4
- Radiological anatomy	13
- Biomechanics of the Hip	29
- Etiology of Acetabular Defects	34
- Classification of Acetabular Defects	40
- Bone Graft	56
- Operative Technique	72
Patients and Methods	100
Results	121
Illustrative Cases	136
Discussion	157
Summary	165
Conclusion	167
Recommendations	168
References	169
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
AAOS	: American Academy of Orthopaedic Surgeons
DDH	: Developmental dysplasia of the hip
PVNS	: Pigmented villonodular synovitis
ТНА	· Total hip arthroplasty

List of Tables

Table No.	. Citle Page No.
Table (1):	Causes of acetabular defect37
Table (2):	AAOS classification for acetabular deficiency
Table (3):	Engh and Glassman acetabular deficiency classification. 53
Table (4):	Gross and Associates classification system $\dots 54$
Table (5):	Harrington's classification system for acetabular deficiency
Table (6):	Classification of acetabular defects73
Table (7):	Modular Trabecular Metal Acetabular Augment Construct System97
Table (8):	Age of patients
Table (9):	Sex of the patients
Table (10):	Side of the defect104
Table (11):	Type of the defect105
Table (12):	Primary or secondary defect106
Table (13):	Traumatic or non-traumatic Acetabular defect
Table (14):	Classification of acetabular defect 108
Table (15):	Harris Hip Score System (1969) 118
Table (16):	Acetabular reconstruction with bone graft in total hip replacement

List of Tables (Cont.)

Eable No.		Eitle	Page No.
Table (17):	-	between cavitary oup regarding age	-
Table (18):	-	between cavitary oup regarding sex	-
Table (19):	-	between cavitary oup regarding side o	•
Table (20):	-	between cavitary oup regarding etiolo	•
Table (21):	-	between cavitary oup regarding HHS	•
Table (22):	-	between cavitary oup regarding medic	•
Table (23):	segmental	between cavitary group regardi	ng graft
Table (24):	and segmenta	between cavitary d l defect group regar	ding type of
Table (25):	segmental	between cavitary group regarding	Paprosky
Table (26):	-	between cavitary oup regarding AO cl	-

List of Figures

Figure V	lo. Citle Page No.
Fig. (1):	Plan of ossification of the hip bone
Fig. (2):	Anatomically defined anterior column of acetabulum
Fig. (3):	Anatomically defined anterior column of acetabulum
Fig. (4):	Anatomically defined anterior column of acetabulum
Fig. (5):	Structures at risk in four quadrants 12
Fig. (6):	Line representations of AP radiographic anatomy of the hip
Fig. (7):	Kohler's line (Protrusion of the femoral head medial to this line indicates acetabular protrusio) 16
Fig. (8):	Modified acetabular index for adults 16
Fig. (9):	The preoperative film shows well-preserved bony integrity of the acetabulum (A)
Fig. (10):	Particulate bone grafting was used in this successful lateralization of a medially migrated endoprosthesis. A: Preoperative radiograph. B: Preoperative template with the hatched area representing bone graft. C: Postoperative radiograph
Fig. (11a):	A method for locating the center of rotation 22
Fig. (12):	Showing proper cup anteversion ⁽²³⁾
Fig. (13):	Femoral neck anteversion on groin lateral postion

Fig. (14):	Transischial line obtained on axial image through ischial tuberosities	25
Fig. (15):	Cup in neutral position	25
Fig. (16):	A) Line is drawn through the posterior aspect of the medial and femoral	26
Fig. (17):	Acetabular angle of abduction	27
Fig. (18):	Theta angle	28
Fig. (19):	Free-body diagram for the calculation of the hip joint force while walking	30
Fig. (20):	Effect of lever arm ratio on the hip joint reaction force, adapted from Greenwald	32
Fig. (21):	Use of cane on the unaffected side	33
Fig. (22):	Type I acetabular segmental defect	42
Fig. (23):	Type II acetabular cavitary defect	42
Fig. (24):	Type III acetabular defect	42
Fig. (25):	Type-I acetabular defect. Note that the rim remains supportive and will provide full stability for a hemispherical component	45
Fig. (26):	Type-II acetabular defect. Note the rim defect. The remaining host bone is supportive and will provide full stability for a hemispherical component.	45
Fig. (27-A):	Type 2A defects show generalized enlargement of the acetabulum with minimal osteolysis of the dome	46
Fig. (28-A):	Type-III acetabular defect. The remaining host bone is not supportive and will not provide full stability for a hemispherical component	49
Fig. (29):	Illustration depicting the Paprosky acetabular defect classification system.	51

Fig. (30):	The X-change revision instruments system for socket revision developed by the Nijmegen group
Fig. (31):	The X-change revision mesh instruments system for the femur and the pelvis
Fig. (32A-C	C): Case 1. 1 month postoperatively. A. The graft-cement interface in fuchsine-stained thick section. Note penetration of cement into the graft. Band C. No incorporation of graft in HE-stained section. Note acellular medullary tissue in C (A and B, x20, C x90) D, E. Case (2). 4 months postoperatively. New woven bone (We) is formed on the remnants of the graft (G) by active osteoblasts (arrows). D. HE-stained section. E. Goldner-stained adjacent section. Note red-stained osteoid indicating active bone formation (x225) ⁽⁷⁷⁾ .
Fig. (33):	A and C. Case (3). 8 months postoperatively. The graft is incorporated into a new trabecular structure. If inspected with polarized light, the structure mainly consists of woven bone, with many active bone remodeling sites indicated by the red osteoid staining (Goldner staining, x30).C. Magnification of part of Figure A. Note active osteoblasts (arrows) (x55).0 and D. Case (5). 28 months postoperatively. At the graft-cement (C) interface, new bone (NB) is locally present, graft remnants are absent and locally a soft tissue interface (I)and/or fibrocartilage (F) is present (HE and Goldner staining, x140).
Fig. (34):	Allograft bone is secured to the superior dome with multiple 6.5-mm cancellous screws ⁽⁴³⁾ 80
Fig. (35-A):	Allograft is reamed until the host anterior and posterior columns are engaged

Fig. (36):	A) Model with hemiplevis insertion for acetabular defect. B) acetabular reconstruction with bone graft and antiprotrusio component for type IIIB Paprosky
Fig. (37):	Diagram of reconstruction of a combined medial and peripheral segmental defect with wire mesh, impacted chip graft, and cemented cup. The cup is placed against the transverse ligament.
Fig. (38):	Figures of the X-change revision instruments system for socket revision. From left: allograft bone impaction after reconstruction of bottom and lateral rim of the acetabulum, cement inserted and pressurized, and socket cemented in the allograft bone
Fig. (39):	Algorithm approach for acetabular revision 88
Fig. (40):	Trabecular Metal. A scanning electron micrograph demonstrates the extremely porous microstructure 89
Fig. (41):	Trabecular Metal Modular Cup and Polyethylene Liner
Fig. (42-A):	Trabecular Metal Augment in flying buttress position
Fig. (43 (A)	Preoperative x ray with segmental acetabular defect
Fig. (44): A	A. Trabecular Metal Buttress93
Fig. (45 (A)	Preoperative x ray with acetabular defect type III A Paprosky. (B) treated with trabecul metal cup and buttress augment
Fig. (46): T	rabecular metal augment for type III B ⁽⁹⁰⁾ 94
Fig. (47): (A	A) trabecular metal Cup/Cage Construct (90) 96
Fig. (48): A	ge of patients

Fig. (49):	Sex of the patients
Fig. (50):	Side of the defect
Fig. (51):	Type of the defect
Fig. (52):	Primary or secondary defect
Fig. (53):	Traumatic or non-traumatic acetabular defect 107
Fig. (54):	Comparison between cavitary and segmental group regarding age
Fig. (55):	Comparison between cavitary and segmental group regarding sex
Fig. (56):	Comparison between cavitary and segmental group regarding side of the defect 126
Fig. (57):	Comparison between cavitary and segmental group regarding etiology
Fig. (58):	Comparison between cavitary and segmental group regarding HHS
Fig. (59):	Comparison between cavitary and segmental group regarding medical illness
Fig. (60):	Comparison between cavitary and segmental group regarding graft incorporation
Fig. (61):	Comparison between cavitary and segmental group regarding type of the defect
Fig. (62):	Comparison between cavitary and segmental group regarding Paprosky classification
Fig. (63):	Comparison between cavitary and segmental group regarding AO classification
Fig. (64):	Patient outcome after surgery
Fig. (65-A)	:Paprosky type I or AAO type II central defect for both acetabulum

Fig. (66-A):	Preoperative x ray with paprosky type IIIA or AAO type III acetabular defect	139
Fig. (67-A):	Plain x ray show trumatic acetabular defect Paprosky type IIIA or AAO III	142
Fig. (68-A):	Perioperative x ray with Lt acetabular defect type IIIA paprosky or AAO type III	145
Fig. (69-A):	Paprosky type IIB or AAO type I traumatic Acetabular defect	148
Fig. (70-A):	Preoperative x ray for Type IIB or AAO type I dysplastic acetabular defect 152	
Fig. (71-A):	Preoperative x ray for Type IIB or AAO type I acetabular traumatic defect	155

Introduction

Total hip arthroplasty is one of the most successful procedures in modern medicine and the number of patients receiving a total hip implant is increasing every year⁽¹⁾.

In the long term the main reason for failure of all types of total hip implant is aseptic loosening. Other reasons for failure are septic loosening, recurrent dislocation, malposition, periprosthetic fractures, and mechanical failure of the implant. In most cases failure leads to bone stock loss and revision surgery in cases with extensive bone loss is demanding. In general the outcome of a revision of a failed hip implant is less successful in those hips with greatest bone stock loss⁽²⁾.

On the acetabular side, the loosening process can result in a cavitary bone defect but in the more serious cases segmental wall defects also develop in combination with a cavitary bone deficiency. Traumatic acetabular defect and dysplastic acetabulum are common causes of acetabular defect. Many acetabular reconstruction techniques have been described both with cemented and non cemented cups⁽³⁾.

The most challenging aspect of acetabular revision or primary acetabular defect is managing the bone stock loss and creating a stable reconstruction with long term durability⁽⁴⁾. Reports show that restoring of the normal biomechanical