

Diagnostic and Therapeutic Value of Echocardiography in Critically Ill Patients

Essay

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Maiada Aly Mamdouh Nassef M.B., B.Ch

Supervised by

Prof. Dr. Sherif Wadie Nashed

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Hala Salah El-Din El-Ozairy

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. John Nader Naseef

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Abstract

Background: Echocardiography is one of the best diagnostic tools that the intensivist has, because it can be performed at the bedside, avoiding patients' displacements, and can provide transcendental information on real time for making vital decisions in a noninvasive or semi-invasive form, such as fluid therapy continuity, early vasoactive or inotropic treatment.

Echocardiography is not only a routine diagnostic tool in critically ill patient but also has an important role in assessment of patient with unstable cardiovascular diseases, which is known as emergency echocardiography. In this situation there are 3 scopes of emergency echoc-ardiography: diagnostic, symptom or sign-based and resuscitative.

We also have to distinguish between emergency echo, which is a comprehensive study, from Focused cardiovascular ultrasound or examination performed with pocket size imaging devices.

Aims: The aim of this essay is to discuss the importance of usage of echocardiography in critically ill patients and in emergency settings either as a diagnostic or a therapeutic tool.

Conclusion: Echocardiography has become the primary imaging tool for bedside diagnosis and monitoring of patients in acute cardiovascular conditions. It is non-invasive, provides rapid and accurate assessment of cardiac morphology and haemodynamics under stressful situations and is very useful in assisting therapeutic procedures.

Keywords: Echocardiography, Diagnostic, Therapeutic, Critically Ill Patients

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards Prof. Dr. Sherif Wadie Nashed, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University for his continuous encouragement, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I would like to express my deepest appreciation, respect and thanks to Dr. Hala Salah El-Din El-Ozairy, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University, for her continuous guide in all aspects of life beside her great science, knowledge and information.

I would like to express my deepest appreciation, respect and thanks to Dr. John Nader Naseef, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University, for his continuous guide in all aspects of life beside his great science, knowledge and information.

Last but not least, sincere gratitude to *My Family* for their continuous encouragement and spiritual support.

Contents

Subjects	Page
List of abbreviations	II
List of figures	V
• Introduction	1
• Aim of the Work	3
_ ·	sical Aspects, Types & Different es of Echocardiography4
Echo	cations and Diagnostic Values of ocardiography in Critically III ents29
• Chapter (3): Eme	rgency Echocardiography81
	apeutic Value of Echocardiography itically Ill Patients
• Conclusion	152
• References	153
Arabic Summary	V

List of Abbreviations

	A A A
AAA	Acute Aortic Aneurysm
ACSs	Acute Coronary syndrome
AI	Acoustic impedence
ARDS	Acute respiratory Distress syndrome
AR	Aortic regurge
AS	Aortic stenosis
ASD	Atrial septal defect
AMI	Acute myocardial infarction
AoVTI	Aortic velocity time integral
BAV	Ballon aortic valvuloplasty
CFD	Colour floow doppler
CWD	Continous wave doppler
DCM	Dilated cardiomyopathy
DT	Deceleration time
EDV	End diastolic volume
EF	Ejection fraction
ERO	Effective regurgitant orifice
ESV	End systolic volume
GLS	Global longitudinal strain
HF	Heart failure
HFnEF	Heart Failure with normal ejection fraction
ICM	Ischemic cardiomyopathy
HCM	Hypertrophic cardiomyopathy
ICD	Implantable cardioverter defibrillator
IDCM	Idiopathic cardiomyopathy
IMH	Intra mural hematoma
IVC	Inferior vena cava

List of Abbreviations

IVRT	Isovolumic relaxation period
LA	Left atrium
LAA	Left atrial appendage
LV	Left ventricle
LVIDD	Left ventricular internal diameter at end-diastole
LVOT	Left ventricular outflow tract
LVEDV	Left ventricular end diastolic volume
MR	Mitral regurge
MS	Mitral stenosis
PA	Pulmonary artery
PAsP	Pulmonary artery systolic pressure
PE	Pulmonary embolism
PEEP	Positive end expiratory pressure
PFO	Patent foramen ovale
PISA	Proximal isovelocity surface area
PLAX	Parasternal longitudinal axis
PMC	Percutaneous mitral commissurotomy
PRF	Pulse repetition frequency
PSAX	Parasternal short axis
PTX	pneumothorax
PV	Pulmonary vein
PVR	Pulmonary vascular resistance
PWD	Pulsed wave doppler
RV	Right ventricle
RAP	Right atrial pressure
RCM	Restrictive cardiomyopathy
RVIDD	Right ventricular internal diameter in diastole
SAM	Systolic anterior motion
STE	Speckel tracking echocardiography

List of Abbreviations

SV	Stroke volume
SVC	Superior vena cava
TAPSE	Tricuspid annular plane systolic excursion
TAVI	Transcatheter aortic valve implantation
TDE	Tissue Doppler echocardiography
TEE	Transesophageal echocardiography
TR	Tricuspid regurge
TTE	Transthoracic echocardiography
VSD	Ventricular septal defect
VTI	Velocity-time integral
2D	Two-dimensional

No.	Figure	Page
1	Transducer is at the apex of visual display	5
2	Velocity /time curve	8
3	An example of 2D imaging	12
4	Two-dimensional echo (2-D Echo) views: A. Parasternal long-axis (PLAX) view B. Apical four-chamber (A4CH) view	12
5	M mode through the left ventricle showing movement of the walls over time	13
6	An example of Color Flow Imaging of a mitral regurgitation jet	15
7	An example of Pulsed Wave Doppler of normal flow through the left ventricular outflow tract	16
8	Pulsed Wave Doppler of mitral inflow shows an aliased mitral regurgitation waveform	17
9	An example of Continuous Wave Doppler of a mitral regurgitation jet.	18
10	An example of Tissue Doppler through the medial mitral annulus	19
11	Parasternal long axis view	20
12	Short axis view at the level of the papillary muscles	22
13	Short axis view at the level of the aortic valve	23
14	Apical 4 chamber view	24
15	Apical 5-chamber (A5CH) view	25
16	Apical 2 chamber view	26

17	Subcostal 4 chamber view	28
18	Left ventricular (LV) ejection fraction estimation using modified Simpson's rule.	31
19	DP/DT apical 4 chamber view/CW Doppler MR	33
20	Mitral inflow signal-apical 4 c hamber view/PWD MV	57
21	TDI of the Mitral Annulus - apica 1 4 chamber view /TDI PW	58
22	Echocardiographic regional function and coronary artery distribution	40
23	Apical four-chamber view demonstrating true left ventricular apical aneurysm.	41
24	Obstructive HCM apical 4 chamber view /color doppler.	43
25a	M-mode of classic systolic anterior motion (SAM) in hypertrophic cardiomyopathy.	45
25b	Systolic anterior motion of the MV – apical three-chamber view/2D.	46
26	Apical 4 chambr view of DCM	47
27	Apical 4- chamber view of amyloidosis.	49
28	Short-axis view of "D-shaped" left ventricle in systole (A) and diastole (B) with marked right ventricular enlargement.	51
29	TAPSE apical 4 chamber view /M m ode RV wall	52
30	Mitral Stenosis – PLAX/2D	58
31	Vena contracta –apical three- chamber view	61
32	Retrograde flow in AR –suprasternal view/Color Doppler	62

33	Quantification of MR – apical four-chamber view/Color Doppler	64
34	Mitral valve Endocarditis- PLAX zoomed/ 2D	66
35	Transesophageal echocardiography of mechanical mitral valve open (arrows), demonstrating prosthetic artifact (*).	69
36	Long-axis view of large postoperative loculated posterior effusion.	70
37	Constrictive pericarditis "Bounce" mechanism	72
38	Method for stroke volume (SV) calculation using aortic annulus and aortic time velocity integral (TVI). $SV = CSA \times TVI$.	74
39	Method for calculation of right ventricular systolic pressure. PASP, pulmonary artery systolic pressure;	75
40	Transesophageal echocardiography of large mass (<i>M</i>) invading both atria with associated mobile thrombus in a patient who presented with bilateral upper extremity emboli and was found to have metastatic lung cancer.	76
41	Transesophageal echocardiography of grade 5 atheromatous debris (<i>arrows</i>). This was an incidental finding.	77
42	Frank-Starling relationship.	78
43	Left ventricular short –axis view. Eccentric index assessment.	79
44	TEE examination obtained in a patient with type B acute aortic dissection	90
45	Severe atherosclerotic disease of the descending thoracic aorta in an elderly patient	93

46	Echo examination of a patient admitted for acute pericarditis. increased thickness of the pericardial layer close to the inferolateral and anterolateral wall of the left ventricle and absence of pericardial effusion.	95
47	Echocardiographic examination of a patient admitted for recurrent episodes of pulmonary embolism.	106

Introduction

Echocardiography is one of the best diagnostic tools that the intensivist has, because it can be performed at the bedside, avoiding patients' displacements, and can provide transcendental information on real time for making vital decisions in a noninvasive or semi-invasive form, such as fluid therapy continuity, early vasoactive or inotropic treatment, realization of a pericardiocentesis in a cardiac tamponade, systemic fibrinolysis in severe pulmonary embolism, or the indication of cardiac surgery for the existence of mechanical complications in context of acute coronary syndrome. In spite of this, it continues to be an underused diagnostic method, even in the coronary units (Romero-Bermejo et al., 2011).

Echocardiography is not only a routine diagnostic tool in critically ill patient but also has an important role in assessment of patient with unstable cardiovascular diseases, which is known as emergency echocardiography. In this situation there are 3 scopes of emergency echocardiography: diagnostic, symptom or sign- based and resuscitative (Neskovic et al., 2013).

Emergency echocardiography is directly related to acute resuscitation such as detection of pericardial effusion and tamponade, regional left ventricular function, right ventricular size, checking central venous volume status and condition of great vessels, which may be crucial for acute decision-making (Neskovic *et al.*, 2013).

Transthoracic echocardiography is the main source of information in the emergency setting but when its results are non-diagnostic, transesophgeal echocardiography should reasonably be the first choice (**Neskovic** *et al.*, **2013**).

We also have to distinguish between emergency echo, which is a comprehensive study, from Focused cardiovascular ultrasound or examination performed with pocket size imaging devices (Neskovic et al., 2013).

Aim of the Work

The aim of this essay is to discuss the importance of usage of echocardiography in critically ill patients and in emergency settings either as a diagnostic or a therapeutic tool.

Chapter 1

Physical Aspects, Types and Different Modes of Echocardiography

I. Physics of ultrasound:

Sound is an example of a longitudinal wave oscillating back and forth through a transmitting medium at a fixed velocity, resulting in zones of compression and rarefaction. Ultrasound includes that proportion of the sound spectrum above 20kHz. Echo machines use frequencies of 2–10MHz. The wavelength (λ) is inversely related to the frequency (f) by the sound velocity (c) so that $c = \lambda f$. Sound velocity in a given material is constant but varies in different materials. Ultrasound propagates poorly in air. c in blood is 1570 m/s, soft tissue 1540 m/s and air 330 m/s (Figure 1) (**Otto, 2004**).