DEVELOPMENT OF LOCAL TECHNIQUES FOR RECYCLE AND REUSE OF TRANSFORMER'S OIL

by

Eng. Ali Gomaa Ali Abd El-Aziz B.Sc. in Electric Power Engineering Ain Shams University, 1980

A thesis Submitted in Partial Fulfillment of the Requirement for the Master Degree

In

Environmental Engineering

ENGINEERING DEPARTMENT INSTITUTE OF ENVIRONMENTAL STUDIES AND RESEARCH AIN SHAMS UNIVERSITY

DEVELOPMENT OF LOCAL TECHNIQUES FOR RECYCLE AND REUSE OF TRANSFORMER'S OIL

Eng. Ali Gomaa Ali Abd El-Aziz B.Sc. in Electric Power Engineering Ain Shams University, 1980

A thesis Submitted in Partial Fulfillment of the Requirement for the Master Degree

In

Environmental Engineering

Under the supervision of **Prof. Dr. Ibrahim El Desouki Helal**

Associate Professor - Electrical Power Engineering Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Refaat A. El-Adly

Professor in Petroleum chemistry, Process Design and Development Department,

Egyptian Petroleum Research Institute

Dr. Noha Samir Donia

Lecturer in Environmental Engineering Department, Institute of Environmental Studies and Researches, Ain Shams University

Dedication

To whom I owe her my existence
The one who shaped my past, present
And future

ACKNOWLEDGMENT

The author wishes to express his sincere thanks and gratitude to Ass. Prof. Dr. Ibrahim El-Desouki Helal, Electrical power Engineering, Faculty of Engineering, Ain Shams University for his supervision and constant support throughout the course of this thesis.

The author is greatly indebted to Prof. Dr. Refaat A. El-Adly, Head of Special Process Laboratory, Egyptian Petroleum Research Institute for suggestions the topic and lines of this thesis, supervising and valuable guidance.

The author expresses also his sincere thanks to Dr. Noha Samir Donia, Lecturer at the Environmental Engineering Department, Institute of Environmental Studies and Researches, Ain Shams University for her continuous help and supervision.

I would like to express my sincere appreciation to Dr. Ahmed A. Abdel-Aziz and Eng. Eman M. Saad for their encouragement and help.

Thanks are due to the Egyptian Petroleum Research Institute and to the Faculty of Engineering, Ain Shams University for the provision and laboratory facilities.

ABSTRACT

The objective of this is to propose an approach for recycling the transformer oil used in high voltage transformers.

The recycling technique provides environmental friendly usage and safe disposal.

The study is based on acid/cement kiln dust for treating the used transformer oil. The different oil samples were taken from two different Substations: Egyptian Petroleum Research Institute (EPRI) 11/04 kV Quaha 66/11 kV.

The physiochemical properties together with the electrical properties were tested for the oil samples both before and after Treatment. The physiochemical properties testing and reclamation process were carried out in the chemical labs of Egyptian Petroleum Research Institute (EPRI).

However, the electrical properties were tested in the high voltage labs of faculty of engineering, Ain Shams University.

The optimum treated conditions were achieved by using sulphuric acid 5 wt%. Time mixing 90 minutes, temperature 40°C and by pass kiln dust 7 wt%.

Results showed that the recycled transformer oil have lower density, viscosity, pour point and total acid number. Further more, remarkable improvements in the electrical properties have been achieved, e.g., breakdown voltage and power dissipation factor.

The acid sludge which produced from the recovery of the used transformer oil was treated by different formulation from inorganic salts. The formulation efficiency which gives the better Separation of hydrocarbons was determined. The proposed technique was proven to reduce environmental problems of the used transformer oil.

SUMMARY

In this study, an approach for the regeneration of waste transformer oils by using acid /by-pass kiln dust cement was achieved.

The physicochemical properties of the used oils under study, show that the kinematic viscosities of UTO1 and UTO2 are 19 and 21 cSt; density 810.2 and 0.8159 g/ml: total acidity number 0.41 and 0.58; pour point -10and -9°C: breakdown voltage 30 and 25 kV; dissipation factors 0.03 and 0.05, respectively. These data reveal that the used transformer oils are out of IEC296 specification limits and do not meet with the standard specifications.

Structural group analysis for the used transformer oils UTO1 and UTO2 were characterized by high aromatic content 20 and 23 wt% and conradson carbon residue 0.71 and 0.82 wt%, respectively. These undesirable constituents are the main factors for the poor quality and bad electrical properties of the transformer oil. In addition, the carbon distribution and structural group analysis reveal that the used transformer oils are containing considerable portions of paraffinic compounds.

The average molecular weight of the used transformer oils (UTO1 and UTO2) are 432 and 445, respectively. Correlation of the average molecular weights and the n-d-M data reveals the complex nature of the hydrocarbon molecules of the used transformer oils.

Correlation of the type of aromatics classes and n-d-M data reveals the complex nature of the used transformer oils (UTO1 and UTO2) under study.

High performance liquid chromatography show the polyaromatic hydrocarbons compounds is one of the most common causes of deterioration in the insulating oils quality. These compounds (PAHs) are hazardous organic compounds and particular importance as environmental contaminants. Most of them are toxic and those with four or more rings are organic compounds often carcinogenic.

IR spectra, GC, HPLC for used transformer oils reveal that the oil UTO2 is

more deteriorated than oil UTO1 this reveal that the potential power of the station.

The breakdown voltage increases with increasing the mixing time for sulphuric acid dosages of 3 wt% and 5 wt% but decreases at 7 wt% sulphuric acid.

The average molecular weight of the used transformer oils (UTO1 and UTO2) are 432 and 445, respectively. Correlation of the average molecular weights and the n-d-M data reveals the complex nature of the hydrocarbon molecules of the used transformer oils.

Infrared spectra of the UTO1 and UTO2 samples show a group of weak absorption bands in the region 1850-1650 cm⁻¹, particularly four bands at about 1780, 1745, 1710 and 1655 cm⁻¹. These bands result from stretching vibrations of C=O of ester (1780 and 1745 cm⁻¹); ketones, aldhyeds and carboxylic acids (1710 cm⁻¹) and highly conjugated carbonyls such as quinone-type structures and amides (1650 cm⁻¹). It is evident, therefore, that the oxidation reaction is favored in electrical station.

According to the degree of deterioration of used transformer oils under investigation there are many processes that occur in the electrical station such as thermal cracking, polymerization, cyclization and isomerization reactions. Thus, paraffins, polycyclic hydrocarbons (naphthenes & aromatics) and some heavy components can be created. This finding is deduced from the chromatogram of gas chromatography as a hump of unresolved complex mixture.

The chemical analysis of the by-pass kiln dust (Table 6) reveals that contains low amount from both oxides Al₂O₃ (3.14 wt%) and Fe₂O₃ (2.84 wt%). Kiln dust is also enriched in CaO and Na₂O (53.1 and 2.5 wt% respectively), which causes the high alkalinity. This alkalinity of the by-pass kiln dust plays an important role in the eliminating the acidic compounds which cause the formation of emulsions with moisture in the transformer oil

and also it has efficient as adsorbent and bleaching agent.

The effect of stirring time with different weight percentages of sulphuric acid is examined to select the optimum addition time. The reaction was carried out at different times of 30, 60, 90 and 120 minutes. The yield of the recovered oil, total acidity, total aromatics and flash point decreases by increasing mixing time at all dosages from sulphuric acid. The breakdown voltage increases with increasing the mixing time for sulphuric acid dosages of 3 wt% and 5 wt% but decreases at 7 wt% sulphuric acid when increasing mixing time. This could be attributed to the removal of sulpher, sludge oxidative and undesirable components by sulphuric acid.

The efficiency of sulphuric acid activity increases by increasing the mixing time and dose percentage leading to increasing the attacks on various compounds.

Concerning the total acid number, the acidic components are removed effectively when the used transformer oil has been treated with either percentage of 5 wt% or 7 wt% sulphuric acid. However, the yields of the treated oil decrease with such increase in the sulphuric acid percentage. The correlation between wt% sulphuric acid and the acceptable limits of total acid number, taking into consideration the yields, reveal that 5wt % of sulphuric acid is the optimum ratio with respect to both the quality and yield of the treated (processed) oil.

The optimum treated conditions were achieved by using sulphuric acid 5wt%. Time mixing 90 minute, by-pass kiln dust 7wt%, and temperature 40°C data show that the recycled transformer oils have lower density, viscosity, pour point and total acid number. Further, remarkable improvements in the electrical properties have been achieved. In addition, the above reclamation conditions gives oils have good physical and electrical characteristics within the standard specifications required.

CONTENTS

	Page
ENGLISH TITLE	
ACKNOWLEDGEMENT	i
DEDICATION	ii
SUMMARY	iii
CONTENTS	v
LIST OF TABLES, PHOTOS AND FIGURES	X
INTRODUCTION	1
CHAPTER (1) LITERATURE REVIEW	3
1-1 Introduction	3
1-2 Parameters Affecting the Characteristics of Transformer Oil	4
1-2-1 Ageing	4
1-2-2 Brake Down Voltage and Discharging	6
1-2-3 The Dissolved Gas Analysis	8
1-2-4 Testing and Improvement Devices	10
1-3 Transformer Oils	13
1-3-1 Properties of Transformer oils	13
1-3-1-1 Physical Properties	13
1-3-1-2 Chemical Properties	15
1-3-1-3 Electrical Properties	17
1-3-2 Egyptian Standard Specification	19
CHAPTER (2) USED OIL DISPOSAL AND ENVIRONMENT	21
2-1 Waste Management	21
2-1-1 Introduction	21
2-1-2 Strategy for Waste Management	22
2-1-2-1 Waste Minimization	24
2-1-2-2 Recycling	24
2-2 Liquid Waste Management Plan Aspects	25
2-2-1 Source Control and Pre-treatment	26
2-2-2 Reduction, Reuse and Recycling - The 5Rs	26
2-2-3 Alternative Methods of Waste Treatment and Disposal	28

2-3 Used Oil	29
2-3-1 Definition	29
2-3-2 Toxicity	30
2-3-3 Recycling	30
2-3-4 Environmental Protection against Waste Oils Pollution	31
2-3-5 Toxicity Testing	33
2-3-6 Toxic Hazards of Used Oils	34
2-4 Environmental Impact of Used Oils and Kiln Dust	35
2-4-1 Disposal of Used Oils	35
2-4-2 Possible Uses of Waste Oil	36
2-4-3 Legislative Influences on Waste Oil Collection and Reconditioning	37
2-4-4 Re-Refining	38
2-4-5 Sulfuric Acid Refining (Meinken)	39
2-4-6 Propane Extraction Process (IFP, Snamprogetti)	40
2-4-7 Mohawk Technology (CEP-Mohawk)	41
2-4-8 KTI Process	41
2-4-9 PROP Process	42
2-4-10 Safety Clean Process	43
2-4-11 DEA Technology	44
2-5 Cement Kiln Dust	46
2-5-1 Recycling of Cement Dust	48
2-5-2 Alkali Cycle	49
2-5-3 Sulphur Cycle	50
2-5-4 Cement Dust and its Circulation	50
2-5-5 Statement of the Problem	53
2-5-6 Possible Uses of Cement By-Pass Dust	54
CHAPTER (3) EXPERIMENTAL WORK	57
3-1 Raw Materials	57
3-1-1 Used Oil Samples	57
3-1-2 Cement Kiln Dust	57
3-2 Determination of Physico-Chemical Characteristics	60
3-2-1 Preliminary Distillation	60
3-2-2 Density	60

3-2-3 Kinematics Viscosity	60
3-2-4 Pour Point	61
3-2-5 Carbon Residue Content	61
3-2-6 Ash Content	61
3-2-7 Water Content	62
3-2-8 Hydrocarbon Components Analysis	62
3-2-9 Structural Group Analysis	63
3-3 Analysis Techniques	63
3-3-1 Gas Chromatographic Analysis	63
3-3-2 High Performance Liquid Chromatography (HPLC) Analysi	s 63
3-3-3 Infrared Spectrophotometer	64
3-4 Procedures	64
3-4-1 The first Technique (Acid/kiln dust treatment)	64
3-4-2 The Second Technique For Treatment Acid Sludge	65
3-5 Dielectric Test Equipment and Methods	66
3-5-1 The Test Apparatus	65
3-5-2 Procedure	68
3-5-2-1 Preparation of Sample	68
3-5-2-2 Test Temperature	69
3-5-2-3 Application of Voltage	69
3-5-3 Number of Tests	69
3-6 Test Method for Power Factor of Electrical Insulating Oils	70
3-6-1 ASTM Standards	70
3-6-2 General Considerations	70
3-6-3 Sampling	70
3-6-4 Test Cells	70
3-6-4-1 Design of the Cell	70
3-6-5 Test Chamber	73
3-6-6 Test Temperature	74
3-6-7 Test Voltage	74
3-6-8 Test Cell Cleaning	75
3-6-9 Preparation of Specimen and Test Cell Filling	76
3-6-10 Procedure of Power Factor Test	77

Chapter (4): RESULTS AND DISCUSSIONS	78
4-1 Introduction	78
4-2 Identification and Characteristics of the Used Transformer Oils	78
4-3 IR spectral Analysis	83
4-4 Chromatographic Analysis	88
4-5 By-pass Kiln Dust	93
4-6 Sulphuric Acid Treatment and Mixing Time	94
4-7 Effect of the By-pass Kiln Dust	96
4-8 Electrical Properties	97
4-9 Breakdown Voltage as a Function of Temperature	100
4-10 Dissipation factor as a function of temperature	100
4-11 Viscosity as a function of temperature	101
4-12 Yield as A Function of Temperature	101
4-13 Total Acid Number as a Function of the Temperature	102
4-14 Effect of Polyaromatic Hydrocarbons	103
4-15 Physicochemical Properties of Recycled Oils	103
4-16 Acid Sludge Disposal/Pollution Control	110
CHAPTER (5): CONCLUSIONS	115
REFERENCES	116
ARABIC SUMMARY	
ADARIC TITI E	

List of Tables, Figures and Photos

List of Tables	Page
Table 1.1 Egyptian Standard Specifications for transformer oil.	22
Table 3.1 formulation of the component used in the treatment of acid sludge	65
Table 4.1 Physico-Chemical properties of the used transformer oils (UTO1 & UTO2)	79
Table 4.2 Assignment of the Vibration of the Functional Groups in the Infrared Spectra of the Used Transformer Oils	86
Table 4.3 Parameters calculated from the FTIR Spectra of the and UTO2	86
Table 4.4 Molecular weight and molecular formulae of some studied polyaromatic hydrocarbons	92
Table 4.5 Chemical Analysis for by–Pass kiln dust	93
Table 4.6 Effect wt % of sulphuric acid and mixing time on properties of the recovered transformer oil RTO1	97
Table 4.7 Effect wt % of sulphuric acid and mixing time on properties of the recovered transformer oil RTO2	97
Table 4.8 effect of the by-pass Kiln dust on the properties of the treated oil (RTO1) with 5 % H ₂ SO ₄ at 40°C	98
Table 4.9 effect of the by-pass Kiln dust on the properties of the treated oil (RTO2) with 5 % H ₂ SO ₄ at 40°C	98
Table 4.10 Effect of mixing time on polyaromatics distribution at optimum conditions	99
Table 4.11 physico-chemical properties of the recycled transformer oils at optimum conditions	109
Table 4.12 the efficiency test of formulation	113

List of Figures and Photos

Chapter (2)	
Figure 2.1 Waste Management	25
Figure 2.2 sulfuric acid re-refining (flow chart of the meinken process)	40
Figure 2.3 flow chart of the KT1 process: thin film evaporator (TFE) with hydro-	42
treatment.	
Figure 2.4 Flow chart of the PROP Process.	42
Figure 2.5 The safety Clean process.	43
Figure 2.6 Introduction of selective solvent extraction in the re-refining process	44
(DEA/mineralöl-Raffinierie Dollpergen, Germany).	
Figure 2-7 Cement By-Pass Dust	55
Chapter (3)	
Figure 3.1 A typical simplified power system	59
Figure 3.2 Test cell with spherical surfaced electrode	67
Figure 3.3 Test Set-Up for Power Factor Measurements at Elevated Temperature	71

Using Three-Electrode Test Cell.	
Figure 3.4 Loss tangent test cell recommended by CIGRE (quantity of oil	73
required to fill cell 45 ml, approx.)	
Photo 3.1 the Hiptronic test apparatus	66
Photo 3.2 the electrodes	66
Chapter (4)	
Figure 4.1 Infrared spectra for the first used transformer, UTO1	85
Figure 4.2 Infrared spectra for the second used transformer, UTO2	85
Figure 4.3 Gas chromatographic analysis of the first used Transformer oil, UTO1	88
Figure 4.4 Gas chromatographic analysis of the second used Transformer oil,	88
UTO2	
Figure 4.5 Paraffinic Carbon distribution for used transformer oils, UTO1 and	89
UTO2	
Figure 4.6 HPLC chromatogram of the UTO1	91
Figure 4.7 HPLC chromatogram of the UTO2	91
Figure 4.8 Effect of mixing time on the TAN at different oil temperature for	104
RTO1	
Figure 4.9 Effect of mixing time on the TAN at different oil temperature for RTO2	104
Figure 4.10 Effect of mixing time on the Kin. viscosity at different oil	105
temperature for RTO1 Figure 4.11 Effect of mixing time on the Vin vigeogity at different oil	105
Figure 4.11 Effect of mixing time on the Kin. viscosity at different oil temperature for RTO2	103
Figure 4.12 Effect of mixing time on the Yield at different oil temperature for	106
RTO1	106
Figure 4.13 Effect of mixing time on the Yield at different oil temperature for RTO2	106
Figure 4.14 Effect of mixing time on the BDV at different oil temperature for	107
RTO1	
Figure 4.15 Effect of mixing time on the DDV at different all terms are true for	107
Figure 4.15 Effect of mixing time on the BDV at different oil temperature for RTO2	107
Figure 4.16 Effect of mixing time on tan δ at different oil temperature for RTO1	108
Figure 4.17 Effect of mixing time on tan δ at different oil temperature for RTO2	108
Figure 4.18 Component type analysis of MCR and hydrocarbon	113
	1

INTRODUCTION

One of the major concerns has been the disposal of by-products generated during the regeneration of the used transformer oil by turning problematic waste products into saleable. Egypt is now faced with enormous problems of environmental protection, a continuous decrease in petroleum reserves and the ever increasing demand for energy.

Transformer oil represents today, one of the most important of a long series of petroleum specialty oils. This oil serves as a dielectric and coolant medium in transformer units. In performing these functions, the oil gradually deteriorates by oxidation and picks up moisture. If the free moisture content rises above a certain level, its insulating efficiency deteriorates and arcing therefore may occur deteriorate. As the result, asphaltenic materials precipitate and deposit on the core and in the transformer cooling coils, thus giving bad insulating and cooling.

Reclamation of the used transformer oil eliminates insoluble and dissolved contaminants to attain oil with characteristics similar to those of new oil. Clay is used in the refining step of the used oils to improve their color and to remove asphaltic and resinous materials. The refining action of the clay depends on its nature, method of application and treating.

The cement industry produces a large amount of waste dust. This dust arises from two sources. Firstly, cement dust from the rotary kiln, known as kiln dust, that settles from the electrostatic precipitation used to purify the flue gases evolving from the kiln; and secondly, by-pass dust, which constitutes a "purge" from the kiln in order to minimize the amount of alkalis in the effluent flue gases from the kiln. The first type can usually be recycled to the kiln since its alkali content is usually low. By-pass dust, on the other hand can not be recycled to the kiln, its alkali content usually exceeding 10%. The rate of by-pass dust production usually ranges from 3 - 8% of the kiln production rate. A capacity of 4000 ton/day clinker will produce about 200