Bicipital Tenotomy Versus Tenodesis in Rotator Cuff tear: Randomized Controlled Study

Thesis

Submitted for Partial Fulfillment of MD Degree in Orthopedic Surgery

By

Mohamed Ahmed AbdElMoez

M.B., B.Ch, M.Sc. Orthopedic surgery Ain Shams University

Under Supervision of

Prof. Dr. Elzaher Hassan Elzaher

Professor of Orthopedic Surgery Ain Shams University

Prof. Dr. Mohamed Hassan Sobhy

Assistant Professor of Orthopedic Surgery Ain Shams University

Dr. Zeiad Mohamed Zakaria

Lecturer of Orthopedic Surgery Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة التوبة الآية (105)

- At first, thanks to Allah for all his gifts.
- Words stand short when they come to express my gratefulness to my supervisors.
- I would like to express my deep gratitude and appreciation to Prof. Dr./ ElZaher Hassan for his great supervision, help, advice, and continuous encouragement. Without his support it would have been impossible for this study to be achieved in this form. I had the privilege to benefit from his great knowledge and morals; it is an honor to work under his guidance and supervision.
- I also sincerely express my great appreciation to Prof.

 Dr. \Mohamed Sobhy for his advice, valuable guidance and all efforts he offered to make this work possible.
- I also sincerely express my great appreciation to Dr. \ Zeiad Zakaria for his sincere and valuable guidance and encouragement always been available to advise me.
- I dedicate this work to My family whom without their sincere emotional support this work could not have been completed.

Mohamed Ahmed AbdElMoez

Contents

S	ubjects	age
•	List of Abbreviations	I
•	List of Tables	III
•	List of Figures	V
•	Introduction	1
•	Aim of the work	4
•	Review of Literature	
	- Chapter (1): Anatomy	5
	- Chapter (2): Etiology	23
	- Chapter (3): Diagnosis of rotator cuff disease	se27
	- Chapter (4): Management of Rotator Cuff 7	Tears 45
•	Patients & Methods	62
•	Results	93
•	Discussion	120
•	Case presentation	135
•	Summary and Conclusion	147
•	References	150
•	Arabic summary	

List of Abbreviations

AC : Acromioclavicular

ADL : Activity of daily living

AP : Anteroposterior

ASES: American shoulder and elbow surgeons

CAL: Coracoacromial ligament

CHL : Coracohumeral ligament

CMS : Constant-murley score

EMG: Electromyography

ER : External rotation

FF: Forward flexion

GH: Glenohumeral

IGHL: Inferior glenohumeral ligament

IR : Internal rotation

LHB : Long head of biceps

LHBT: Long head of biceps tendon

MGHL: Middle glenohumeral ligament

MRI : Magnetic resonance imaging

PPV : Positive predictive value

PXR : PLAIN X ray

RC: Rotator cuff

List of Abbreviations

RCR: Rotator cuff repair

RCT: Rotator cuff tear

ROM : Range of motion

SGHL: Superior glenohumeral ligament

SLAP: Superior labral tear from anterior to posterior

SLBC: Superior labral biceps complex

UCLA: University of california los anglos

US : Ultrasonography

VAS: Visual analouge scale

16G : Sixteen gauge

3T : Three tesla

List of Tables

Table	Title	Page
1	Insertion types of long head of biceps	9
	tendon	
2	Tendon releases and other alternatives that	47
	might be useful in obtaining a tension-free	
	repair	
3	Preoperative pain in both groups	96
4	The preoperative ROM of the group A	99
5	The preoperative ROM of the group B	99
6	The preoperative Functional Scores	100
7	The mean operative time in both groups	102
8	ROM improvement in group A	105
9	ROM improvement in group B	106
10	Difference in postoperative ROM between	107
	both groups	
11	Constant score improvement in both groups	109
12	ASES score improvement in both groups	110
13	Comparison of improvement in ASES and	111
	Constant scores	
14	Comparison of return to work between both	113
	groups	
15	Different variables in both sex groups	114
16	Different variables in both dominant and	116
	non-dominant groups	
17	Different variables in work groups	117

₹ List of Tables ✓

Table	Title	Page
18	Comparison of pre-operative and post-	136
	operative ROM in case 1	
19	pre-operative and post-operative Constant	137
	and ASES scores	
20	Comparison of pre-operative and post-	139
	operative ROM in case 2	
21	Pre-operative and post-operative Constant	140
	and ASES Scores case 2	
22	Comparison of pre-operative and post-	142
	operative ROM in case 3	
23	Pre-operative and post-operative Constant	143
	and ASES Scores case 3	
24	Comparison of pre-operative and post-	145
	operative ROM in case 3	
25	Pre-operative and post-operative Constant	146
	and ASES Scores case 4	

List of Figures

Figures	Title	Page
1	Cadveric shoulder, rotator cable	7
2	LHB and humeral abduction	10
3	LHBT and humeral rotation	12
4	Close relations of the long head of biceps	13
	tendon	
5	(a) Normal anterior biceps pulley (b) Partial	14
	rupture of anterior supraspinatus tendon and	
	concomitant posterior pulley lesion	
6	Illustration depicting the normal anatomy of	16
	the glenohumeral capsuloligamentous	
	structures	
7	Illustrations showing glenolabral anatomic	16
	variations. The sublabral recess, sublabral	
	foramen, and Buford complex are shown	
8	Left shoulder. Arthroscopic view of	18
	anteromedial (AM) pulley and the	
	posterolateral pulley from posterior viewing	
	portal. (b) Partial tear of the superior border of	
	the right subscapularis tendon	
9	LHB instability due to pulley lesions	18
10	A: transverse force couple B: coronal force	20
	couple	
11	(MRI) demonstrating a type IV convex	24
	acromion	

Figures	Title	Page
12	(AP) radiograph demonstrating a keeled	24
	acromion	
13	Neer impingement sign	29
14	Hawkins impingement sign	29
15	Rent test	30
16	(A) Supraspinatus test (empty-can test). (B)	31
	Supraspinatus test (full-can test)	
17	External rotation lag sign	32
18	Belly-press test	33
19	Lift-off test	34
20	Hornblower's sign	35
21	Speed test	36
22	Yergason test	37
23	Active compression test	38
24	A: Normal axial view. B: Supraspinatus outlet	39
	view shows type III acromion	
25	(a) Coronal oblique T2-weighted fat	40
	suppressed image showing full thickness tear	
	of the supraspinatus with retraction, cranial	
	migration humeral head. (b and c) Coronal	
	oblique and sagittal T1-weighted images	
	showing atrophy of supraspinatus muscle with	
	fatty infiltration	

Figures	Title	Page
26	A. Oblique sagittal T2-weighted MR image	41
	shows increased signal intensity of the LHBT.	
	B. Fat-suppressed axial T2-weighted MR	
	image shows a C-sign in the LHBT at the level	
	of the bicipital groove (arrow). C. More	
	distally, intrasubstance defect is also seen in	
	the LHBT (arrow)	
27	A. Oblique sagittal SPAIR T2-weighted MR	42
	image shows flattening and increased signal	
	intensity of the LHBT (arrow). B. Fat	
	suppressed axial T2-weighted MR image	
	shows medial subluxation of the LHBT. C.	
	Arthroscopic image reveals significant fraying	
	and partial tear of the LHBT	
28	(a) Patient positioning during examination of	44
	long head of the biceps tendon. (b) Normal	
	long head of biceps tendon, short axis	
	(asterisk). (c) Normal long head of biceps	
	tendon, long axis (asterisk	
29	Crescent tear supraspinatus (a) After footprint	48
	preparation and anchor placement, sutures are	
	passed through tendon (b) and tied (c)	
30	A large supraspinatus tendon tear	49
31	Double-row rotator cuff repair	50
32	Open biceps tenodesis	55
33	Arthroscopic biceps tenodon	56

List of Figures

Figures	Title	Page
34	Tenotomized biceps tendon sutured under the	58
	rotator cuff, making the LHBT in contact with	
	the undersurface of rotator cuff	
35	Subacromial view of intracuff tenodesis	58
36	ASES Score.	70
37	Constant score	72
38	A: Beach chair position B: Marking of the	75
	shoulder	
39	Arthroscopic bicipital examination	77
40	Arthroscopic bicipital tenotomy	78
41	Incision for subpectoral tenodesis	85
42	Delivering the biceps tendon through the	86
	incision	
43	Anchor placement	87
44	Whip-stitching bicipital tendon	88
45	Excision of excess biceps tendon	88
46	Tying anchor sutures	89
47	Closure of wound	89
48	Percentage of males and females involved in	94
	the study	
49	Percentage of right and left side in the study	94
50	Occupation of the patients involved in the	95
	study	
51	Patients with history of previous shoulder surg	96
52	Acromion type in patients involved in the	100
	study	

Figures	Title	Page
53	Tear retraction in patients involved in the	101
	study	
54	Pain improvement in both groups	103
55	Patient satisfaction among cases in group A	104
56	Patient satisfaction among cases in group B	104
57	Improvement in ROM in tenotomy group	106
58	Improvement in ROM in tenodesis group	107
59	Difference in postoperative ROM between	108
	both groups	
60	Improvement in Constant score in both groups	109
61	Improvement in ASES score in both groups	111
62	Difference in improvement in ASES and	112
	Constant scores between both groups	
63	Difference in time to return to work between	113
	both groups	
64	Difference in ASES and Constant between	115
	male & female.	
65	Difference in ASES and Constant between	116
	male & female	
66	Difference in postoperative pain between both	118
	work groups	
67	Difference in ASES and Constant between	118
	both work groups	
68	Coronal MRI (T2) case 1	135
69	ROM at final follow- up in case 1	137

Figures	Title	Page
70	A) AP x-ray, B) Coronal MRI, C) Sagittal	138
	MRI case 2	
71	ROM at final follow- up in case 2	140
72	Preoperative MRI case 3	141
73	Postoperative imaging case 3.	142
74	ROM at final follow- up in case 3	143
75	Preoperative imaging case 4 (A) PXR AP-	144
	view (B) Coronal MRI (C) Sagittal MRI	
76	ROM at final follow- up in case	146

Introduction

Rotator cuff disorders are the most common cause of shoulder pain and impairments in adults with a prevalence ranging from 5 to 39%. The pathogenesis is multi factorial, and includes repetitive micro trauma, age-related degeneration, impingement and major trauma. (1)

Rotator cuff tears are frequently associated with pathologies of the long head of the biceps tendon (LHBT). Its role in shoulder pathology, however, is a subject of controversy. Some view the LHB as a vestigial structure where as others believe it to be a major contributor to shoulder pain. Without a clear understanding of the functional role of the LHB, treatment recommendations have likewise long been a source of debate. (2)

In 1926, Gilcreest was the first to report a method of tenodesing the long head of the biceps to the coracoid process. (3) Since that time, interest in treating pathology of the long head of the biceps has waxed and waned. However, in recent years interest has been renewed primarily due to development of new treatment techniques. Surgeons have debated the merits of tenotomy versus