Matrix Metalloproteinases and TIMPs Expression in Pleural Effusion of Different Origins

Thesis Submitted for fulfillment of Master Degree in Pulmonology

Investigator

Hamdi Yahya Ahmed Humadi M.B.B.C.H

Supervisors

Prof. Hoda Ali Abou Youssef

Professor of Chest Diseases
Faculty of Medicine
Cairo University

Prof. Laila Ahmed Rashed

Professor of Biochemistery
Faculty of Medicine
Cairo University

Dr. Ahmed Serag El-Din Al-Halfawy

Assistant Professor of Chest Diseases
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2012

بسم الله الرحمن الرحيم

لاً إِنَّا مِلْدِ لَا خَانَا إِلَّا الْمَا إِلَّا مِلْدِ لَا خَانَا إِلَّا الْمَا الْمُا الْمُا الْمَا الْمُلْكِيمُ الْمَا الْمُلْكِيمُ الْمُا الْمُلْكِيمُ الْمُا الْمُلْكِيمُ الْمُا الْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِلِيمُ الْمُلْكِلِيمُ الْمُلْكِيمُ الْمُلْمُلُولُلُمُ الْمُلْمُلْكِيمُ الْمُلْكِيمُ الْمُلْكِمُ الْلْمُلْكِمُ الْمُلْكِمُ الْ

صدق الله العظيم

(سورة البقرة الأية ٣٢)

Abstract

Pleural effusion is a common clinical problem. The volume of the pleural fluid can increase dramatically with most pathologic conditions affecting the pleura. It is useful to differentiate the pleural effusion into transudates and exudates. Traditionally, such differentiation is made using Light's criteria, based on the protein and lactate dehydrogenase levels in pleural fluid and serum (*Lee et al*, 2006).

Analysis of pleural fluid assists in the diagnosis of intra-thoracic and systemic disorders that cause pleural effusions. Nearly 75% of patients with pleural effusions gain either a definitive or presumptive diagnosis after a systematic analysis of pleural fluid. The need for further diagnostic studies depends on whether pleural fluid is classified by pleural fluid analysis as exudative or transudative in nature (*Heffner*, 2006).

Proteolytic processes may play a role in the formation of pleural effusions by increasing vascular permeability, and therefore by facilitating fluid influx into the pleural space (*Zucker et al, 1998*). The presence and enzymatic activities of MMPs and TIMPs have been identified in pleural effusions (*Hurewitz et al, 1992*) & (*Eickelberg et al, 1997*).

Key words:

MMPs, TIMPs, Pleural effusions

Acknowledgment

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the most graceful and the most merciful.

I am deeply indebted to so many people for guiding and helping me in my endeavor in making this dissertation a reality.

I express my deep sense of gratitude to my respected teacher and guide, **Prof. Hoda A. Abou Youssef**, Professor of Chest Diseases, Faculty of Medicine, Cairo University, who gave me the opportunity to learn from her faithful advices and expanded experience and for her valuable guidance and constant encouragement throughout the course and the present study.

I am greatly thankful to **Prof. Laila Ahmed Rashed**, Professor of Biochemistry, Faculty of Medicine, Cairo University, for all of her efforts without which, this work may not have been achieved.

I express my heartfelt thanks to **Dr. Ahmed Al-Halfawy**, assistant Professor of Chest Diseases, Faculity of Medicine, Cairo University, for his timely advice, guidance and encouragement at every stage in the conduct of this study and giving me much of his valuable time and experience.

My sincere gratitude to all my teachers in the Department of Chest Diseases for their constant support at every stage of this study.

My sincere thanks to my colleagues and all the staff in the Chest Department for their immense support and help.

I will always be grateful to my parents. Finally I am indebted to all my patients without whose co-operation this study would not have been possible.

Contents

Content	page
Introuducation	1
Aim of work	4
Review of literature :	
Chapter 1: pleura (anatomy & physiology of pleura)	5
Chapter 2: etiology of pleural effusion	23
Chapter 3: approach to a patient with a pleural effusion	45
Chapter 4: Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs)	75
Subjects and methods	91
Results	98
Discussion	122
Summary and conclusion	134
Recommendations	137
References	138
Arabic transulation	

List of tables

Table	Description	Page
1	General causes of pleural effusion	22
2	Mecahnisms of pleural fluid formation in disease	24
3	Pathophysiological phases of evolution of parapneumonic effusion and empyema	33
4	Causes of transudative pleural effusion	48
5	Causes of exudative pleural effusion	49
6	Observations of pleural fluid helpful in diagnosis	58
7	Pleural fluid tests and sample collection guidance	60
8	Sensitivity of tests to distinguish exudative from transudative effusions.	61
9	Biochemical features of transudative pleural effusion	69
10	Diagnosis of tuberculous pleural effusion	70
11	Diagnoses that can be established definitively by PFA	71
12	Mammalian matrix metalloproteinases	79
13	The persentage of patients in each studied group.	98
14	The different types of malignancies included in the study.	99
15	The mean age of the patients among the four groups.	100

16	The sex distribution of patients among the four groups.	101
17	The mean values of protein level in pleural fluid and in serum among the different groups	103
18	The mean values of lactate dehydrogenase in plural fluid and in serum among the four groups	105
19	The mean glucose level in pleural fluid and in blood among the four group	106
20	The mean values of MMP-2, MMP-9 and TIMP-1 in pleural fluid in exudative and transudative effusions.	108
21	The mean values of MMP-2, MMP-9 and TIMP-1 in pleural fluid among the four groups.	110
22	The ratios between MMP-2, MMP-9 and TIMP-1 and total protein in pleural fluid in the four groups.	112
23	The mean values of MMP-2, MMP9 and TIMP-1 in pleural fluid in malignant cases according to subtypes.	114
24	The levels of MMP-2, MMP9 and TIMP-1 and the ratio between MMP-2/MMP-9 in pleural fluid in cases of parapneumonic effusion (n=7).	115

List of figures

Figure	Description	Page no.
1	Schema of pleural liquid entry and exit in the normal state	19
2	Posteroanterior chest radiograph in a 42-year-old woman with breast cancer shows blunting of the right cardiophrenic angle	51
3	Posteroanterior chest radiograph in a 50-year-old man with non-Hodgkin lymphoma	51
4	Diagnostic algorithm for the investigation of a unilateral pleural effusion	74
5	Domain structure of MMPs	80
6	Structure of the TIMP-1 protein	81
7	The MMP–TIMP balance contributes to the normal and diseased lung structure.	82
8	The distribution of patients in each studied group	98
9	The different types of malignancies included in the study.	100
10	The mean age of the patients among the four groups.	101
11	The sex distribution of patients among the four groups.	102
12	The mean values of protein level in pleural fluid and in serum among the four groups	104
13	The mean values of lactate dehydrogenase in plural fluid and in serum among the four groups.	106
14	The mean glucose level in pleural fluid and in blood among the four group.	107
15	The mean values of MMP-2, MMP-9 and TIMP-1 in pleural fluid in exudative and transudative effusions	109
16	The mean values of MMP-2, MMP-9 and TIMP-1 in pleural fluid among the four groups	111
17	Ratios between MMP-2, MMP-9 and TIMP-1 and total protein in pleural fluid in the four groups.	113

18	correlation between MMP-9 levels and pleural fluid LDH in all cases.	116
19	correlation between MMP-9 and MMP-2 in pleural fluid in all cases.	117
20	correlation between MMP-9 and TIMP-1 in pleural fluid in all cases.	117
21	correlation between MMP-9 and total protein in pleural fluid in all cases	118
22	Correlation between MMP-9 and glucose in pleural fluid in all cases.	118
23	Correlation between MMP-9 and MMP-2 in exudative pleural effusion.	119
24	correlation between MMP-9 and TIMP-1 in exudative pleural effusion.	120
25	correlation between MMP-9 and pleural fluid sugar in exudative effusion	121

List of abbreviations:

ADA: adenosine deaminase.

AFB: Acid fast bacilli.

AMA: Anti- myocardial antibody.

ANA: Anti-nuclear antibody.

ARDS: acute respiratory distress syndrome.

BAPE: Benign asbestos pleural effusion.

CA: cancer antigen.

CAPD: Continuous Ambulatory Peritoneal Dialysis.

CBC: Complete blood count.

CEA: Carcinoemberyonic antigen.

CHF: congestive heart failure.

CK 5-6: Cytokeratin 5/6

CT: computerized tomograpghy.

CXR: Chest X-ray.

ECM: extracellular matrix.

ICU: intensive care unit.

IL: Interleukine.

INF-*γ*: Interferon gamma.

LDH: Lactate dehydrogenase.

LE: Lupus erythematous cell.

MC: Myocobacterium culture.

MMP: Matrix Metalloproteinase.

MPE: malignant pleural effusion.

MRI: Magnetic resonance imaging.

MRSA: Methicillin resistant Staphylococcus aureus.

Mtb: Myocobacterium tuberclousis.

NT-Pro BNP: N-Terminal Pro- brain natriuretic peptide.

 $P\pi$: oncotic pressure.

PA: Postero-anterior.

PCIS: Post Cardiac Injury Syndrome.

PE: pleural effusion.

PEEVO: Pleural effusion of extravascular origin.

PF: Pleural fluid.

PFA: Pleural fluid analysis.

pH: power of hydrogen ion.

Pmv: microvascular pressure.

PPD: Perifeid protein derivative.

PPE: Para pneumonic effusion.

Ppl: Pleural pressure.

RA: Rheumatoid arthritis.

SLE: Systemic lupus erythematous.

TB: Tuberculosis.

TGF-β: Transforming growth factor beta.

TIMP: Tissue inhibitor of metalloproteinase.

TNF-α: Tumor Necrosis Factor alpha.

TPE: Tuberclous pleural effusion.

VATS: Video Assisted Thoracoscopic Surgery.

Introduction

A pleural effusion refers to an abnormal accumulation of fluid in the pleural cavity, it is often a result of local pleuro- pulmonary diseases but can also complicate many systemic pathologies. Pleural effusion develops when the rate of pleural fluid formation exceeds that of its drainage. Establishing the underlying cause of pleural effusion is often challenging because a wide range of local and systemic disease can lead to pleural effusion formation. Pleural fluid samples should be analyzed to determine whether it is a transudate or exudate (*Light*, 2002).

Matrix metalloproteinases (MMPs) are a family of extracellular proteinases defined by the presence of two conserved motifs in the lung. Essentially all cell types, including epithelial, interstitial, vascular, and inflammatory cells produce MMPs; however both the pattern and levels of MMPs expressed vary among cell types and situations. Although long thought to be responsible for turnover and degradation of extracellular matrix (ECM), matrix degradation per se is neither the sole nor the predominant function of these proteinases. Recent findings indicate that MMPs act on a variety of extracellular proteins, such as cytokines, chemokines, antimicrobial peptides, and other proteins, that regulate varied inflammation and immunity. aspects of The tissue inhibitors metalloproteinases (TIMPs) are the primary endogenous inhibitors of MMPs. TIMPs indirectly regulate remodeling of (ECM) as well as cell signaling via ECM molecules. An imbalance between active MMPs and TIMPs in favor of enhanced MMP activity can lead to inappropriate ECM loss, or conversely, an imbalance favoring the TIMPs can abrogate MMP

Introduction 1

activity leading to excess ECM deposition. Maintenance of MMPs-TIMPs balance is integral to normal lung development and function and a disruption in this balance has been implicated in numerous diseases of the lung (*Parks*, 2006).

Proteolytic processes may play a role in the formation of pleural effusions by increasing vascular permeability, and therefore by facilitating fluid influx into the pleural space. The presence and enzymatic activities of MMPs and TIMPs have been identified in pleural effusions (*Zucker et al*, 1998).

Tissue damage is a characteristic manifestation of infection by Mycobacterium tuberculosis (Mtb). Proteolysis by macrophage-secreted proteases has been implicated in such destructive processes (*Kwang et al*, 2005).

In this regard, the proteolytic action of MMPs may be involved in the pathogenesis of tuberculosis, like many other diseases associated with tissue destruction. Several studies have reported that macrophages and monocytes release MMP-9 in response to Mtb or its cellular components (*Quiding-Jarbrink et al, 2001*) & (*Friedland et al, 2002*).

MMPs have been known to play a role in the pathogenesis of malignancy (*Nagase & Woessner*, 1999) & (*Kleiner et al*, 1999). They have been reported to be expressed in lung cancer tissues and to be elevated in the sera and pleural effusions of lung cancer patients (*Kwang et al*, 2005).

Iglesias et al, *2005* showed very high concentrations of MMP-1, MMP-9 and particularly MMP-8 in patients with empyema and complicated para-pneumonic pleural effusion (PPE). Elevated MMP-1 concentration may

Introduction 2

be associated with its release by mesothelial cells stimulated by inflammatory mediators. An increase in MMP-8 and MMP-9 is a result of a higher activity of neutrophils, it indicates that these enzymes play an important role in the development of later complications.

Introduction 3