

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Optimal Allocation of Energy Storage Systems (ESS) for Load Management Applications

M.Sc. Thesis By

Eng. Ahmed Mahmoud Mahmoud Ahmed

Submitted in partial fulfilment of the requirements for the M.Sc. degree in Electrical Engineering

Supervised by:

Prof Dr. Almoataz Youssef Abdelaziz Dr. Mohamed Ezzat Abdelrahman

EXAMINERS COMMITTEE

Name: Ahmed Mahmoud Mahmoud Ahmed

Thesis title: Optimal Allocation of Energy Storage Systems (ESS) for Load

Management Applications

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Ahmed Mohamed Refaat Azmy

Electrical Power and Machines Department Faculty of Engineering Tanta University

Prof. Dr. Hani Mohamed Hasanien

Electrical Power and Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Almoataz Yousef Abdelaziz

Electrical Power and Machines Department Faculty of Engineering Ain Shams University

SUPERVISORS COMMITTEE

Name: Ahmed Mahmoud Ahmed

Thesis title: Optimal Allocation of Energy Storage Systems (ESS) for Load

Management Applications

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

<u>Signature</u>

Prof Dr. Almoataz Youssef Abdelaziz

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Dr. Mohamed Ezzat Abdelrahman

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of master of science degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the department of electrical power and machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Ahmed Mahmoud Mahmoud Ahmed			
Signature:			
	Date:	/	/ 2018

Researcher Data

Name : Ahmed Mahmoud Mahmoud Ahmed

Place of birth : Cairo - Egypt

Last academic degree : Bachelor of Science

Field of specialization: Electrical Power and Machines

University issued the :

degree

: June - 2011

Date of issued degree: 19/07/2011

Job : Teacher Assistant – Electrical power and

machines department-Faculty of Engineering-Ain shams university

ABSTRACT

The integration of distributed generation, especially the renewable energy-based ones, has led to a revolution in the use of distribution systems and the emergence of smart grid concepts. Smart grids facilitate the high penetration of renewable energy sources in order to achieve greater system reliability and efficiency. Energy storage systems (ESSs) are of the most promising techniques that can be used for achieving those goals. The capital and installation costs of energy storage systems are expensive and consequently, the utilities are very careful of integrating the energy storage devices in distribution systems because of the uncertainty of the cost benefits of these devices over their high costs. The research work in this thesis discusses the economic benefits of installing ESSs for distribution utilities; thus, the interest of integrating these ESSs in the power systems can be increased.

The first objective of this thesis is to introduce a new modeling strategy of wind-based renewable energy sources for planning purposes in distribution systems. This strategy is based on Monte Carlo Simulation method which considers the stochastic nature of the wind power through the correct determination of the appropriate cumulative distribution function. Monte Carlo Simulation technique is utilized for obtaining the most likelihood wind turbine output power at each hour at each season. The results of the proposed strategy are compared with another probabilistic model to show the effectiveness of the proposed algorithm. The proposed algorithm is tested using MATLAB environment and the results and comparisons show that the proposed modeling algorithm gives accurate results.

The second objective is to develop a comprehensive planning framework for allocating distributed storage (DS) units in distribution networks in order to achieve several benefits that include decreasing the cost of energy losses, deferring network upgrades, and making benefit of the price arbitrage. Moreover, the application of DS helps in shifting the peak demand into off-peak times, thus deferring the network upgrades. On the top of that, charging and discharging the DS units during off-peak and peak times, respectively, represent another benefit due to the price arbitrage between those different times. In this framework, the installation and maintenance costs of DS units are optimized with respect

to the economic value of the benefits mentioned above. The output of the planning framework is the optimal size and location of DS units to be installed by using Big Bang- Big Crunch and Grey Wolf optimization techniques, the optimal operation of DS at each load state and the load centers to be shed during contingencies.

Keywords: arbitrage benefit, distributed generators, energy storage systems, optimization.

ACKNOWLEDGEMENT

I thank God, for wisdom and knowledge that He has blessed me. You made me strong. You gave me reasons to go and make the best out of me.

I would like to thank my supervisors: Professor Almoataz Youssef Abdelaziz, and Dr. Mohamed Ezzat for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and have made major influence in my academic life. I could not possibly list all that I have learned from them. I also offer my gratitude to Dr. Mahmoud Mohamed Othman. My research work would not have been possible without his help, his constant support and encouragement.

I am grateful for my parents, who helped me through all these. Thank you for supporting me in every way.

Ahmed Mahmoud Mahmoud

Cairo, 2018

Table of Contents

Ac Ta Li Li	abstract	VII VIII XII
1.	Chapter 1 Introduction	1
	1.1. General	1
	1.2. Research Motivation	4
	1.3. Research Objectives	5
	1.4. Thesis outlines	5
2.	Chapter 2 Background and Literature Review	7
	2.1. General	7
	2.2. Energy storage technologies	7
	2.2.1. Superconducting magnetic energy storage (SMES)	10
	2.2.2. Capacitors	11
	2.2.3. Batteries	12
	2.2.4. Flywheels	13
	2.2.5. Compressed air energy storage (CAES)	13
	2.2.6. Pumped hydro storage (PHS)	14
	2.3. DG types, sizes and applications	17
	2.4. Optimal allocation of distributed generator units	17
	2.4.1. Classic approaches	17
	2.4.1.1. Analytical or deterministic algorithms	17
	2.4.1.2. Linear programming (LP)	18
	2.4.1.3. Mixed integer linear programming (MILP)	18
	2.4.1.4. Dynamic programming (DP)	18
	2.4.2. Basic search methods	19
	2.4.2.1. Exhaustive search (ES)	19
	2.4.2.2. Optimal power flow (OPF)	19
	2.4.3. Artificial intelligent algorithms	20
	2.4.3.1. Tabu search (TS) algorithm	20

	2.4.3.2.	Evolutionary algorithms (EAs)	21
	2.4.3.3.	Ant colony (AC) algorithm	22
	2.4.3.4.	Firefly (FF) algorithm	24
	2.5. Optimal allo	ocation and planning of energy storage systems (ESSs) in	n
	distribution	systems	25
	2.5.1. Optin	nization techniques for ESS planning	26
	2.5.1.1.	Analytical methods	26
	2.5.1.2.	Meta-heuristic methods	27
	2.5.2. Object	ctives (Applications) of ESS planning	28
	2.5.2.1.	Maximizing the arbitrage benefit	28
	2.5.2.2.	Improving the reliability indices	28
	2.5.2.3.	Deferring the upgrading process in distribution system	ns30
	2.5.2.4.	Considering the high penetration level of renewable e	nergy
	res	sources	30
	2.5.2.5.	Minimizing the NPV of the energy losses cost	30
	2.5.2.6.	Bus voltage control.	31
	2.6. Summary		31
3.	Chapter 3 A Pro	obabilistic Modeling Strategy of Wind Power and Sy	stem
	Demand		33
	3.1. General		33
		eview of wind power and system demand modeling	
	3.2. Literature re		34
	3.2. Literature re 3.2.1. Wind	eview of wind power and system demand modeling	34
	3.2.1. Wind 3.2.2. Load	eview of wind power and system demand modeling	343536
	3.2.1. Wind 3.2.2. Load 3.3. The propose	eview of wind power and system demand modeling I power modeling modeling	34 35 36
	3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data	34 35 36 37
	3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data	34 35 36 37 40
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data of wind power based on seasonally separated data	34 35 36 37 40 41
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den 3.7. Model desc	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data of wind power based on seasonally separated data nand modeling based on seasonally separated data	34 35 36 37 40 41 44
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den 3.7. Model desc 3.8. Results of the	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data of wind power based on seasonally separated data nand modeling based on seasonally separated data cribed in [61] and [62]	34 35 36 40 41 44 45
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den 3.7. Model desc 3.8. Results of the	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data of wind power based on seasonally separated data nand modeling based on seasonally separated data eribed in [61] and [62] he modeling strategy	34 35 36 40 41 44 45 46
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den 3.7. Model desc 3.8. Results of the 3.8.1. Rener	eview of wind power and system demand modeling I power modeling modeling ed modeling strategy based on hourly separated data nand modeling strategy based on hourly separated data of wind power based on seasonally separated data nand modeling based on seasonally separated data eribed in [61] and [62] the modeling strategy wable energy-based generator model	34 35 36 40 41 44 45 46
	3.2. Literature re 3.2.1. Wind 3.2.2. Load 3.3. The propose 3.4. System den 3.5. Modeling o 3.6. System den 3.7. Model desc 3.8. Results of t 3.8.1. Rener 3.8.1.1.	eview of wind power and system demand modeling I power modeling	34 35 36 40 41 44 45 46 46

	3.8.1.3. Validation of MCS results of the model described in section
	3.352
	3.8.1.4. Comparison with [61] and [62] with the model described in
	section 3.353
	3.8.2. System demand modeling60
	3.8.2.1. Model described in section 3.460
	3.8.2.2. Model described in section 3.6
	3.9. Summary
4.	Chapter 4 A Comprehensive Approach for ESSs Optimal Planning and
	Operation68
	4.1. General
	4.2. Optimization techniques
	4.2.1. Big Bang- Big Crunch (BB-BC) optimization technique69
	4.2.2. Grey Wolf (GW) Optimization technique75
	4.3. A comprehensive approach for energy storage systems optimal planning and
	operation in presence of wind power generation80
	4.3.1. Problem formulation80
	4.3.1.1. Maximization of the arbitrage benefit80
	4.3.1.2. Minimization of net present value of energy loss cost81
	4.3.2. Methodology83
	4.3.2.1. Optimal allocation of wind-based DG83
	4.3.2.2. Optimal allocation of ESS in presence of wind-based DGs85
	4.3.3. System under study
	4.3.4. Test cases and results
	4.3.4.1. Optimal operation of ESS for maximizing the arbitrage
	benefit89
	4.3.4.2. Optimal allocation of wind-based DG and ESS90
	4.3.4.2.1. Results obtained by BB-BC optimization technique91
	4.3.4.2.2. Results obtained by using GW optimization technique91
	4.4. Optimal ESS allocation for load management applications92
	4.4.1. Objectives of the study92
	4.4.2. Problem formulation
	4.4.2.1. Objective function and constraints93
	4422 Assumptions 94

	4.4.2.3. Ap	proach94
	4.4.2.3.1.	Wind based DG modeling95
	4.4.2.3.2.	Load modeling95
	4.4.2.3.3.	Optimize the operation of DS units95
	4.4.2.3.4.	Determine the annual arbitrage benefit and the number
	of	charging/ discharging cycles96
	4.4.2.3.5.	Evaluate the energy losses and system upgrade costs.97
	4.4.3. Case study	799
	4.4.4. Results	
	4.4.4.1. Pro	oposed wind-based DG model and load model102
	4.4.4.2. Sy	stem without DG104
	4.4.4.3. Sy	stem with wind-based DG105
	4.5. Summary	106
5.	Chapter 5 Conclusio	ons and Recommendations for Future work107
	5.1. Conclusions	107
	5.2. Future work sugg	gestions108
Re	ferences	109
Lis	st of Publications	117

List of Figures

Figure 1-1	Application-benefits for a specific 10 years for the U.S. [2]	2
Figure 1-2	Total forecasted Energy storage capacities in Australia [7]	4
Figure 2-1	Classifications of electrical energy storage systems [9]	8
Figure 2-2	Classification of ESSs according to physical construction	9
Figure 2-3	Classifications of ESSs according to application [11]	10
Figure 2-4	Construction of SMES [9]	11
Figure 2-5	Structure of super capacitors [9]	12
Figure 2-6	Structure of Flywheels energy storage devices [9]	13
Figure 2-7	Structure of CAES [9]	14
Figure 2-8	Schematic diagram of pumped hydro storage system [9]	15
Figure 2-9	Flowchart of ACO algorithm	23
Figure 3-1	Modeling strategy flowchart	39
Figure 3-2	Flow chart of the proposed methodology for DG modeling	43
Figure 3-3	Cumulative distribution function at (03:00 a.m.) of winter	46
8	season	
Figure 3-4	Cumulative distribution function at (05:00 a.m.) of spring season	47
Figure 3-5	Cumulative distribution function at (07:00 a.m.) of	48
1 iguic 3-3	summer season	70
Figure 3-6	Cumulative distribution function at (09:00 a.m.) of fall	48
1 iguite 5 0	season	10
Figure 3-7	Output wind power over all the hours (i.e. 96 hours)	49
Figure 3-8	Cumulative distribution function of the simulated wind	50
118410 5 0	power of winter season	20
Figure 3-9	Probability density function of the simulated wind power	51
11801100	of winter season	0 1
Figure 3-10	MCS convergence for h=3 of the winter season	52
Figure 3-11	Output power for the original data at h=3 of the winter	53
8	season	
Figure 3-12	Output wind power over all the hours (i.e. 96 hours)	54
Figure 3-13	Probability density function at (03:00 a.m.) of winter	57
8	season	
Figure 3-14	Probability density function at (05:00 a.m.) of spring	58
8	season	
Figure 3-15	Probability density function at (07:00 a.m.) of summer	58
8	season	
Figure 3-16	Probability density function at (09:00 a.m.) of fall season	59
Figure 3-17	Cumulative distribution function at (03:00 a.m.) of winter	60
S	season	
Figure 3-18	Cumulative distribution function at (05:00 a.m.) of spring	61
S	season	
Figure 3-19	Cumulative distribution function at (07:00 a.m.) of	61
	summer season	
Figure 3-20	Cumulative distribution function at (09:00 a.m.) of fall	62
_	season	
Figure 3-21	Probability density function at (03:00 a.m.) of winter	63

season	
Probability density function at (05:00 a.m.) of spring	63
season	
Probability density function at (07:00 a.m.) of summer	64
season	
Probability density function at (09:00 a.m.) of fall season	64
CDF of the simulated system demand, winter season	65
PDF of the simulated system demand, winter season	65
Initial spread for candidate solutions for two-dimensional	70
case study where the parameters are donated as X1 and X2	
Spread of candidate solutions for two-dimensional case	72
study where the parameters are donated as X1 and X2 and	
the center of mass is marked as 'o' after 4th iteration	
Accumulation of the final candidate solutions about the	73
center of math after many iterations	
BB-BC algorithm flowchart	74
Hierarchical levels of grey wolves	75
• •	79
•	87
System under study	88
	Probability density function at (05:00 a.m.) of spring season Probability density function at (07:00 a.m.) of summer season Probability density function at (09:00 a.m.) of fall season CDF of the simulated system demand, winter season PDF of the simulated system demand, winter season Initial spread for candidate solutions for two-dimensional case study where the parameters are donated as X1 and X2 Spread of candidate solutions for two-dimensional case study where the parameters are donated as X1 and X2 and the center of mass is marked as 'o' after 4th iteration Accumulation of the final candidate solutions about the center of math after many iterations BB-BC algorithm flowchart Hierarchical levels of grey wolves GWO algorithm flowchart Flow chart of the proposed methodology

List of Tables

Table 2-1	Economics and industrial power rating for each type of energy	16
	storage technologies [8], [9], [15], [16]	
Table 3-1	Selected wind power states	42
Table 3-2	Appropriate states of wind speed	45
Table 3-3	Characteristics of the available wind turbine	49
Table 3-4	State probabilities for all seasons, wind power	51
Table 3-5	Hourly typical winter and spring seasons output power	55
Table 3-6	Hourly typical summer and fall seasons output power	56
Table 3-7	Probabilistic load model among all the seasons	66
Table 4-1	Optimal DS output power at each load state among all the	90
	seasons	
Table 4-2	Detailed results of the four test cases by using BB-BC	91
Table 4-3	Detailed results of the four test cases by using GWO	92
Table 4-4	Fixed and variable upgrading costs	99
Table 4-5	Capital and maintenance costs of the available DS technologies	100
Table 4-6	Different scenarios	101
Table 4-7	Detailed results of case A using the proposed models	101
Table 4-8	Detailed results of case B using the proposed models	102
Table 4-9	Proposed probabilistic wind-based DG model	103
Table 4-10	Proposed probabilistic load model	104
Table 4-11	Optimal ESS output power at each load state	105