FEASIBILITY OF USING USEFUL BACTERIA TO ENHANCE THE GROWTH OF EDIBLE MUSHROOMS UNDER DIFFERENT CLIMATIC CONDITIONS

By

NORHAN HASSAN ABDEL-AZIZ

B.Sc. Agric. Sci. (Agric. Microbiology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

APPROVAL SHEET

FEASIBILITY OF USING USEFUL BACTERIA TO ENHANCE THE GROWTH OF EDIBLE MUSHROOMS UNDER DIFFERENT CLIMATIC CONDITIONS

By

NORHAN HASSAN ABDEL-AZIZ

B.Sc. Agric. Sci. (Agric. Microbiology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2009

ed by:
•••••
y, Faculty of Agriculture,
•••••
y, Faculty of Agriculture,
•••••
y, Faculty of Agriculture,

Date of Examination: / /2018

FEASIBILITY OF USING USEFUL BACTERIA TO ENHANCE THE GROWTH OF EDIBLE MUSHROOMS UNDER DIFFERENT CLIMATIC CONDITIONS

By

NORHAN HASSAN ABDEL-AZIZ

B.Sc. Agric. Sci. (Agric. Microbiology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2009

Under the supervision of:

Dr. Mohamed El- Sayed El -Haddad

Prof. of Agric. Microbiol., Dept. Agric. Microbiol., Fac. Agric., Ain Shams University.

Dr. Nahed Samy Youssef

Prof. of Agric. Microbiol., Dept. Agric. Biol. Res., Central Lab. for Agric. Climate Agric. Res. Center (ARC).

ABSTRACT

Norhan Hassan Abd El-Aziz, "Feasibility of Using Beneficial Bacteria to Enhance Growth of Edible Mushrooms Under Different Climatic Conditions" Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2018.

Five different bacterial strains namely Peanibacillus. polymyxa (AT13), Bacillus circulans (SD6), Bacillus megaterium (PSB), Azotobacter chrococcum (A101) and pseudomonas. fluorescens (Ps1) were tested for their antagonistic activities against eight edible mushroom strains namely Straphoria rugoso-annulate, Pleurotus sajor-caju, Auricularia. sp, Lentinula edodes, Vollvariella volvacea. Pleurotus eryngii, Pleurotus ostreatus and Pleurotus florida. Most of the bacterial showed antagonistic, effects all the treatments except Peanibacillus polymyxa with P. eryngii, P. ostreatus and Ps. fluorescens with *P.florida* which revealed no antagonistic effects between each pair of them. Selected bacterial strains *Peani polymyxa* and *Ps. fluorescens* were examined for some biological activities such as nitrogenase activity, phosphate solubilization, potassium mobilization, production of indole acetic acid, gibberellic acid and cytokinins. The mycelial growth rate of three oyster mushroom strains namely P. eryngii, P. ostreatus and P. florida was examined on six different agar media to select the most suitable one. The mycelia growth of the tested oyster mushroom strains was examined at different pH values, temperatures and different levels of relative humidity on malt extract agar medium. The highest mycelial growth rate was obtained at 25°C and relative humidity of 65% after 6 days of incubation for the three tested oyster mushroom strains. Seven different cereal grains were tested for mushroom spawn production individually or in combinations (1:1). Millet and sorghum treatments showed highest mycelial growth for *P. florida*. Millet and yellow maize showed the best growth as combination treatment for *P. eryngii* and *P.* florida. Twelve different substrates were examined as growth substrates

for mycelial mushroom production. The best effects on mycelial growth were recorded with cottonseed cake followed by cotton seed hull for selected mushroom strains. Ammonium sulphate showed enhancement of mushroom mycelial growth as chemical additive at 0.5% for P. eryngii after12 days on cotton waste as growth substrate. Wheat bran showed the best effects on mycelial growth after 12 days from inoculation on cotton waste, cottonseed cake and corn cob at 20% of wheat bran. While P. florida showed the highest mycelial growth on cotton waste at 20% of wheat bran and on maize stalk and sugarcane bagasse at 30%. Biological additives were applied in spawn production stage and mycelial production stage at different levels of microbial inoculants. In spawn production, the best mycelial growth was recorded by adding 1ml of *Peani*. polymyxa on sorghum and millet + yellow maize after 12 days of inoculation for P. eryngii. In mycelial production stage, the best mycelial growth was recorded by adding 25% of Peani. polymyxa on cotton waste and cottonseed cake for P. eryngii. From the previous results all best treatments were applied in yield production stage and showed significant results on growth parameters (total yield, biological efficiency%, spawn run and primordia initiation) and chemical parameters (crude protein%, carbohydrate%, ash% and vitamin C mg/50g fruit bodies and crude fiber%) for selected mushroom strains.

Key words: Edible mushrooms fungi, biological activities, nutrient media, optimal conditions, mycelial growth, organic, chemical and biological additives, biological efficiency%.

ACKNOWLEDGEMENT

Praise and thanks to ALLAH, the most merciful for assisting and directing me to the right way

There are few opportunities in the most people's lives to demonstrate formally one's gratitude to people who have been mentors and supporters at different steps of our lives. Even thought, we do not forget to stamp those feeling on paper.

I would like to express my sincere thanks, and deep appreciation to **Dr. Mohamed El Sayed El-Haddad** Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for suggesting the problem, guideness, support, valuable help and fruitful supervision throughout the present study.

Also, deep thanks to **Dr. Nahed Samy Youssef** Prof. at Agriculture Biology Research Department, Central Laboratory for Agricultural Climate, Agricultural Research Center (ARC) for her kindness support, guideness and advising me throughout this study.

Special thanks are due to **Dr. Tarek Said Mohamed El-Tayeb**Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams
University for his sincere help during this study

Deep thanks and gratitude are extended to **Dr. Mona Mohamed Said Zayid** Assoc. Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for her sincere help during preparation of this manuscript, precious advice and support not only at the scientific level.

I would like to thank **Dr. Dalia Ahmed** Researcher at Agriculture Biology Research Department, Central Laboratory for Agricultural Climate, Agricultural Research Center (ARC) for her sincere guidance and valuable help throughout this study

Thanks also are extended to all staff members of Agric Microbiology Dept., Faculty of Agric., Ain Shams University.

Sincere thanks are due to all my colleagues and staff members in the Microbial Inoculants Center, for encouragement and unlimited help by offering all the materials needed for this study.

Thanks are also extended to all staff members of Central Laboratory of Agricultural Climate, Agricultural Research Center

Finally, deep gratitude to all my family for their continuous help and encouragement throughout this work.

CONTENT

	Pages
I. INTRODUCTION	1
2. REVIW OF LITRATURE	4
2.1. Commonly used terms and general characterizations of	
mushroom	4
2.2 common species of edible mushroom fungi	5
2.3. Benefits of edible mushroom fungi	6
2.4. Brief history of mushroom production	7
2.5 Factors affecting the growth of mushroom	8
2.5.1 Effect of nutrient media	8
2.5.2. Effect of temperature on the growth of mushroom	9
2.5.3 Effect of pH on mycelial growth of mushroom	10
2.5.4 Effect of moisture on mycelial growth of mushroom	11
2.5.5 Effect of light on mycelial growth of mushroom	12
2.6. Effect of substrate composition on mushroom growth and	
productivity	13
2.7 Effect of particle size of substrates on mushroom mycelial	
growth	17
2.8 Effect of different additives on mushroom growth	17
2.9. Effect of different grains on spawn production	21
2.10. Effect of some microbial additives on mushroom growth	
and productivity.	25
2.11. Applications of spent mushroom compost	27
3. MATERIALS AND METHODS	30
3.1.Materials	30
3.1.1. Tested mushroom strains	30
3.1.2. Tested bacterial strains	30
3.1.3 Substrates for spawn production	30
3.1.4 Substrates for mushroom production	31
3.1.5. Chemical and biological supplements	31
3.1.6. Microbiological media used	32

ges
1
1
2
2
2
2
2
3
3
3
3
1
1
1
5
5
5
5
5
5
5
7
7
7
3
3

	Pages
3.2.11 Effect of different additives on mycelia growth of tested	
mushroom strains	49
3.2.12 Production of mushroom fruiting bodies	50
3.2.12.1.Effect of the selected bacterial strains on mushroom	
fruiting bodies production	50
3.2.12.2.Effect of organic and chemical additives on mushroom	
fruiting bodies production	50
a- Organic additive	50
b- Chemical additive	50
1-Inoculum preparation	51
2-Mother spawn preparation.	51
3-Substrate preparation	51
4-Spawn run	52
3.2.13. Mushroom growth parameters	52
a- Mycelial growth measurement	52
b- Dry matter % determination	52
c -Yield and biological efficiency	52
d- Fruiting bodies weight.	52
e- Spawn run	53
f- Chemical analyses of the fruiting bodies	53
1-Total nitrogen and crude protein	53
2-Crude fiber	53
3-Ash determination	53
4- Total carbohydrate	53
5- Vitamin C determination	53
3.2.14. Statistical analysis	53
4. RESULTS AND DISCUSSION	54
4.1. Antagonistic activity amongst different bacterial and	
mushrooms strains	54
4.2. Assessment of some metabolic activities of selected	
bacterial strains	54

	Pages
4.3. Influence of nutritional and climatic conditions on mycelial	
growth of three oyster mushroom strains	57
4.3.1. Effect of different nutrient media on the liner growth (cm)	
of mushroom strains P. eryngii, P. ostreatus and P.	
florida at 25°C during the incubation period.	57
4.3.2 Effect of different pH levels on the linear growth (cm) of	
selected cultivated mushroom strains on MEA medium at	
25°C during the incubation period.	59
4.3.3. Effect of different temperatures on the linear growth (cm)	
of P. eryngii, P. ostreatus and P. florida during the	
incubation period	61
4.3.4. Effect of different relative humidity (RH) levels on the	
linear growth (cm) of P. erengii, P. ostreatus and P.	<i>c</i> 2
florida during the incubation period	63
4.4. Growth performance of oyster mushroom P. eryngii, P.	
ostreatus and P. florida grown on different cereal grains	
during spawn production stage	65
4.4.1 Effect of different cereal grains on the linear growth of	
oyster mushrooms P. eryngii, P. ostreatus and P. florida	
during spawn production stage	65
4.4.2 Effect of different cereal grains on nitrogen and dry	
matter% of P. eryngii, P. ostreatus and P. florida at the	
end of spawn production stage.	66
4.4.3 Effect of different combinations between cereal grains	
(1:1) on the linear growth of oyster mushrooms <i>P. eryngii</i> ,	
P. ostreatus and P. florida during spawn production stage	69
4.4.4 Effect of different combinations between cereal grains	
(1:1) on nitrogen and dry matter% of bed substrates	
inoculated by mushroom strains P. eryngii, P. ostreatus	
and P. florida at the end of spawn production stage	69
4.5. Effect of different substrates on the growth performance of	

	Pages
tested mushroom strains during 21 days of the incubation	
period	74
4.5.1. Effect of different substrates on the linear growth (cm) of	
white rot edible fungi P. eryngii, P. ostreatus and P.	
florida during 21 days of the incubation period.	74
4.5.2. Effect of different substrates on nitrogen and dry matter%	
of bed substrates inoculated by P. eryngii, P. ostreatus	
and P. florida at the end of the incubation period.	75
4.6. Effect of different chemical additives on the growth	
performance of selected mushroom strains	79
4.6.1. Effect of different substrates and different concentrations	
of ammonium sulphate on the linear growth (cm) of P .	
eryngii during 21 days of the incubation period.	79
4.6.2. Effect of different substrates and different concentrations	
of ammonium sulphate on nitrogen and dry matter% of bed	
substrates inoculated by P. eryngii at the end of the	
incubation period	80
4.6.3. Effect of different substrates and different concentrations	
of ammonium sulphate on the linear growth (cm) of P .	
ostreatus during 21 days of the incubation period	83
4.6.4. Effect of different substrates and different concentrations	
of ammonium sulphate on nitrogen and dry matter% of	
bed substrates inoculated by P. ostreatus at the end of the	
incubation period	83
4.6.5. Effect of different substrates and different concentrations	
of ammonium sulphate on the linear growth (cm) of P .	
florida during 21 days of the incubation period	87
4.6.6. Effect of different substrates and different concentrations	
of ammonium sulphate on nitrogen and dry matter% of	
bed substrates inoculated by <i>P. florida</i> at the end of the incubation period	87
incubation period 4.6.7. Effect of different substrates and different concentrations.	
4.6.7. Effect of different substrates and different concentrations	

	Pages
of urea on the linear growth (cm) of P. eryngii during 21	
days of the incubation period	92
4.6.8. Effect of different substrates and different concentrations	
of urea on nitrogen and dry matter% of bed substrates	
inoculated by P. eryngii at the end of the incubation	92
period.	92
4.6.9. Effect of different substrates and different concentrations	
of urea on the linear growth (cm) of P. ostreatus during 21	
days of the incubation period	96
4.6.10. Effect of different substrates and different concentrations	
of urea on nitrogen and dry matter% of bed substrates	
inoculated by P. ostreatus at the end of the incubation	
period stage.	96
4.6.11. Effect of different substrates and different concentrations	
of urea on the linear growth (cm) of P. florida during 21	
days of the incubation period	99
4.6.12. Effect of different substrates and different concentrations	
of urea on nitrogen and dry matter% of beds	
inoculated by P. florida at the end of the incubation	99
period	77
4.7. Effect of different levels of wheat bran as an organic	
additive on the growth performance of selected mushroom	
strains	105
4.7.1. Effect of different substrates and different levels of wheat	
bran on the linear growth of oyster mushroom P .	
eryngii during 21 days of the incubation period	105
4.7.2. Effect of different substrates and different levels of wheat	
bran on nitrogen and dry matter % of bed substrates	
inoculated by P. eryngii at the end of the incubation	106
period.	
4.7.3. Effect of different substrates and different levels of wheat	

	Pages
bran on linear growth of oyster mushroom P. ostreatus	
during 21 days of the incubation period	109
4.7.4. Effect of different substrates and different levels of Wheat	
bran on nitrogen% and dry matter% of bed substrates	
inoculated by P. ostreatus at the end of the incubation	
period.	109
4.7.5. Effect of different substrates and different levels of wheat	
bran on the linear growth of oyster mushroom P .	
florida during 21 days of the incubation period	113
4.7.6. Effect of different substrates and different levels of wheat	
bran on nitrogen and dry matter % of bed substrates	
inoculated by P. florida at the end of the incubation	113
period	113
4.8. Effect of different levels of different microbial inoculants as	
biological additives on the growth performance of	
selected mushroom strains during spawn production	119
stage	119
4.8.1 Effect of different cereal grains supplemented by different	
doses of Peani. polymyxa on the linear growth of oyster	
mushroom P. eryngii during spawn production stage	119
4.8.2 Effect of different cereal grains supplemented by different	
doses of Peani. polymyxa on nitrogen and dry matter% of	
bed substrates inoculated by P. eryngii at the end of spawn	
production stage	120
4.8.3 Effect of different cereal grains supplemented by different	
doses of Peani. polymyxa on the linear growth of oyster	
mushroom P. ostreatus during spawn production stage	123
4.8.4 Effect of different cereal grains supplemented by different	
doses of Peani. polymyxa on nitrogen and dry matter% of	
bed substrates inoculated by P. ostreatus at the end of	
spawn production stage	123

	Pages
4.8.5 Effect of different cereal grains supplemented by different	
doses of Ps. fluorecens on the linear growth of oyster	
mushroom P. florida during spawn production stage	127
4.8.6 Effect of different cereal grains supplemented by different	
doses of Ps. fluorecens on nitrogen and dry matter% of	
bed substrates inoculated by P. florida at the end of	
spawn production stage.	127
4.9. Effect of different levels of different microbial inoculants as	
biological additives on the growth performance of selected	
mushroom strains.	132
4.9.1. Effect of different growth substrates supplemented by	
different doses of Peani. polymyxa on the linear growth	
of oyster mushroom P. eryngii during 21 days of the	
incubation period	133
4.9.2. Effect of different growth substrates supplemented by	
different doses of Peani. polymyxa on nitrogen and dry	
matter % of bed substrates inoculated by P. eryngii at	
the end of the incubation period	133
4.9.3. Effect of different growth substrates supplemented by	
different doses of Peani. polymyxa on the linear the	
growth of oyster mushroom P. ostreatus during 21 days	
of the incubation period	137
4.9.4. Effect of different growth substrates supplemented by	
different doses of Peani. polymyxa on nitrogen and dry	
matter % of bed substrates inoculated by P. ostreatus at	
the end of the incubation period	137
4.9.5. Effect of different growth substrates supplemented by	
different doses of Ps. fluorescens on the linear growth	
of oyster mushroom P. florida during 21 days of the	
incubation period	140