PHYTOCHEMICAL AND BIOLOGICAL STUDY OF CERTAIN PLANTS BELONGING TO FAMILY MALVACEAE

A Thesis Submitted to Faculty of Pharmcy Ain Shams University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Pharmaceutical Sciences

(Pharmacognosy)

Ву

Amany Ahmed Thabet Sayed

Bachelor of Pharmaceutical Sciences, 2011 Faculty of Pharmacy, Ain Shams University

Department of Pharmacognosy

Faculty of Pharmacy

Ain Shams University

Abbasia, Cairo, Egypt

2018

Under the Supervision of

Prof. Dr. Abd El-Nasser Badawy Singab

Vice President of Ain Shams University for Postgraduate
Affairs

Professor of Pharmacognosy

Faculty of Pharmacy

Dr. Mohamed Mahmoud El-Shazly

Associate Professor of Pharmacognosy
Faculty of Pharmacy
Ain Shams University

Dr. Fadia Salah Youssef

Faculty of Pharmacy

Ain Shams University

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt
2018

ACKNOWLEDGEMENT

First of all, I would like to extend due praise and thanks to **ALLAH**, the source of all knowledge, and may His peace and blessings be upon all his prophets; for granting me the chance and the ability to successfully complete this study.

I would like to express my deepest gratitude, sincere and profound appreciation to the following people who significantly contributed to the work done in this thesis:

Prof. Dr. Abdel Nasser Badawy Singab, Professor of Pharmacognosy and Vice President of Ain Shams University for Postgraduate Affairs, for his valuable and constructive suggestions during the planning and development of this research work. Words are not enough to express my great appreciation to him for his kind supervision, valuable advice and comments, generous support, sincere guidance and continuous enthusiastic encouragement during this study, setting an example to what a dedicated professor, scientist and advisor should be. His constructive criticism and suggestions helped me a lot to improve this work through the experimental investigations as well as writing and revising the thesis. I am truly lucky to be one of his students.

Dr. Mohamed Mahmoud El Shazly, Associate Professor of Pharmacognosy, Ain Shams University, for his kind supervision, valuable advice and support, assistance in choosing the point of research. Words are not enough to express my profound thanks for him for the positive energy he continuously gives to me that help me a lot as well as his patient guidance and useful critiques, his willingness to give his time so generously to accomplish this work with the best results.

Dr. Fadia Salah Youssef, lecturer of Pharmacognosy, Ain Shams University, for her valuable suggestions and assistance in planning for this research work. I am particularly grateful for the wonderful and useful hours we spent in the lab, for the systematic guidance and great effort she did that helped me to improve the whole work. I am indebted to her with every

single word in this thesis.

Special thanks to **Prof. Dr. Hesham El-Beshbishy**, Professor of Biochemistry, Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia, for performing the in vivo biological study.

Also, I would like to express my deep thankfulness to both **Prof. Dr. Fang-Rong Chang** Professor of Pharmacognosy and Director of Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Taiwan, and **Dr. Michal Korinek**, for hosting the cytotoxicity, anti-allergic and anti-inflammatory assays at their institute.

This work would not have been possible without the Center for Drug Discovery, Research and Development, Faculty of Pharmacy, Ain Shams University. The center offers the required facilities for research including NMR and mass measurement. Also, special thanks to Dr Ahmed Essam, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for NMR measurement and valuable advice.

Special thanks to my second family, all professors at Pharmacognosy Department, Ain Shams University, for their valuable assistance, continuous support and encouragement.

Many thanks to my colleagues at Pharmacognosy Department for their cooperation, support, valuable comments and the friendship we share.

I would also like to thank my dearest great parents whom I really love and respect, I am proud to be their daughter. I am really grateful to them their continuous support and motivation. I am really thankful to my sister Eman for her love and continuous care, my brother Mohamed for his unending inspiration.

Amany Ahmed Thabet
Cairo, 2018

Table of Contents

Content	Page
List of Tables	i
List of Figures.	iv
List of Abbreviations.	viii
Introduction	1
Introduction Literature review. The convergence between and Sterroulia (Malvaccae), others between	1
Literature review: The genus <i>Brachychiton</i> and <i>Sterculia</i> (Malvaceae): ethnobotany, biology, phytochemistry and the role of their gummy exudates in drug	
delivery	4
1. Taxonomy	5
2. Ethnobotany.	10
3. Biological activity	11
4. Phytochemistry	28
5. Gums from Sterculia and Brachychiton and their importance in drug	
delivery	51
Material apparatus and methods	54
1. Material.	54
2. Apparatus	59
3. Methods.	61
${\bf Chapter~1:~Biological~screening~of~the~leaf~methanol~extract~of~\it Brachychiton~rupestris}$	
(T. Mitch. ex Lindl) K. Schum and Brachychiton luridum C. Moore (Malvaceae)	78
1. Results.	78
1.1. Cytotoxicity.	78
1.2. Antimicrobial activity	79
1.3. <i>In vitro</i> anti-allergic activity	83
1.4. <i>In vitro</i> anti-inflammatory activity	84
1.5. <i>In vivo</i> hepatoprotective activity	85
1.6. In vivo antidiabetic activity.	89

2. Discussion.	93
Chapter 2: Chemical composition of the leaf methanol extract of Brachychiton	
rupestris (T. Mitch. ex Lindl) K. Schum (Malvaceae)	101
1. Experimental	101
2. Results and discussion.	108
2.1. Phytochemical screening of <i>B. rupestris</i> leaves	108
2.2. Phytochemical study of <i>B. rupestris</i> leaves.	108
2.2.1. Compounds isolated from the <i>n</i> -hexane fraction of the <i>B. rupestris</i>	
leaves total methanol extract.	109
2.2.1.1. Compound $\underline{1}$ (β -amyrin acetate)	109
2.2.1.2. Compounds $\underline{2}$ & $\underline{3}$ (mixture) (β -sitosterol & stigmasterol)	115
2.2.2. Compounds isolated from the methylene chloride fraction of the B .	
rupestris leaves total methanol extract	121
2.2.2.1. Compound <u>4</u> (Scopoletin)	121
2.2.2.2. Compound $\underline{5}$ (β -Sitosterol-3- O - β -D-glucoside)	127
2.2.3. Compounds isolated from the ethyl acetate fraction of the <i>B. rupestris</i>	
leaves total methanol extract	134
2.2.3.1. Compound $\underline{6}$ (Dihydrodehydrodiconiferyl alcohol 4- O - β -	
D-glucoside)	134
2.2.3.2. Compound $\underline{7}$ (Dihydrodehydrodiconiferyl alcohol 9- O - β -	
D-glucoside)	141
2.2.4. LC-MS analysis of ethyl acetate fraction of the B. rupestris leaves	
ethyl acetate fraction.	148
2.2.5. Molecular Modeling Studies.	153
2.3. Biological activities of the identified compounds from n -hexane and	
dichloromethane fractions of <i>B. rupestris</i>	155
2.3.1. Cytotoxicity.	155
2.3.2. Anti-inflammatory activity.	156

Chapter 3: Chemical composition and biological activity of essential oil of	
Brachychiton rupestris and Brachychiton luridum	157
1. Results	157
1.1. GC/ FID and GC/ MS analyses of the oil	157
1.2. Multivariate chemometric analysis	162
1.3. Cytotoxicity	165
1.4. Antimicrobial activity	165
2. Discussion	168
General summary 1	173
Conclusions and recommendations	181
References 1	184
Arabic summary	

List of Tables

No	Table	Page
1.	Summary of the most relevant biological activities of different Sterculia and	
	Brachychiton species	11
2.	Structures and distribution of secondary metabolites of different Sterculia and	
	Brachychiton species	28
2.1.	The isolated sesquiterpenes and their chemical structures	28
2.2.	The isolated sterols and triterpenes and their chemical structures	30
2.3.	The isolated flavonoids and flavonoid glycosides and their chemical structures	
		34
2.4.	The isolated phenolic acids and phenylpropanoids and their chemical structures	
		41
2.5.	The isolated anthocyanins and coumarins and their chemical structures	43
2.6.	The identified fatty acids and alcohols and their chemical structures	45
2.7.	The isolated alkaloids, carboxylic acids and cerebrosides (miscellaneous	
	compounds) and their chemical structures	49
3.	In vitro cytotoxicity of different extracts and fractions of B. rupestris and B.	
	luridum on HepG2, MDA-MB-231 and A549 cell lines	79
4.	Mean inhibition zones of different extracts and fractions in mm beyond well	
	diameter (6 mm) produced on a range of pathogenic microorganisms	81
5.	Minimum Inhibitory Concentrations (MIC) in μg/mL against the tested	
	microorganisms	82
6.	Inhibition % of β -hexosaminidase release in A23187-induced degranulation assay	
	on RBL-2H3 cell line for the total extracts and fractions of <i>B. rupestris</i> and <i>B.</i>	
	luridum	83
7.	Effects of the total extracts and fractions of B. rupestris and B. luridum on	
	superoxide anion generation and elastase release in FMLP/CB-induced human	
	neutrophils	84
8.	Effect of the oral administration of BRT, BRE and Silymarin on serum AST (U/L)	
	and ALT (U/L) in CCl ₄ -treated rats	86

9.	Effect of the oral administration of BRT, BRE and Silymarin on serum total	
	antioxidant status TAS (mmol/L), superoxide dismutase SOD (U/mL), catalase	
	$CAT (U/mL) and lipid peroxides (nmol/TBARS/mL) in CCl_4\text{-treated}$	
	rats	86
10.	Effect of the oral administration of BRT, BRE and GLB on fasting blood glucose	
	(FBG) (mg/dL) and serum insulin ($\mu U/mL$) in STZ-diabetic treated	
	rats	90
11.	Effect of the oral administration of BRT, BRE and GLB on lipid peroxides	
	production (nmol TBARS/mL serum), serum total antioxidant status TAS	
	(mmol/L), superoxide dismutase SOD (U/mL) and catalase CAT (U/mL) in STZ-	
	diabetic treated rats	90
12	Fractions collected from <i>n</i> -Hexane, dichloromethane and 50% methanol fraction of	
	ethyl acetate fraction of B. rupestris leaves after column chromatography and the	
	weight of each fraction	107
13.	Results of phytochemical screening of <i>B. rupestris</i> leaves	108
14.	Identification of the secondary metabolites predominant in the ethyl acetate fraction	
	of B. rupestris leaves by HPLC-ESI MS	150
15.	Free binding energies (G) of the identified compounds present in the bioactive	
	leaves ethyl acetate fraction (BRE) in human α -amylase (HPA) and human α -	
	glucosidase active (HAG) sites using molecular modelling experiments calculated	
	in Kcal/mol	153
16.	Cytotoxicity of pure compounds on HepG2, MDA-MB-231 and A549 cell	
	lines	155
17.	Effects of pure compounds on superoxide anion generation and elastase release in	
	FMLP/CB-induced human neutrophils.	156
18.	Volatile constituents of the leaves and flowers oils of B. luridum and B.	
	rupestris	159
19.	Inhibitory concentrations (IC ₅₀) in μ g/mL of volatile constituents of <i>B. luridum</i>	
	leaves (BLL), B. rupestris leaves (BRL), B. luridum flowers (BLF) and B. rupestris	
	flowers (BRF) in different cell lines	165

20.	Mean inhibition zones of the volatile constituents of <i>B. luridum</i> leaves (BLL), <i>B.</i>			
	rupestris leaves (BRL), B. luridum flowers (BLF) and B. rupestris flowers (BRF)			
	against different a range of environmental and clinically pathogenic			
	microorganisms determined by the agar diffusion			
	method	166		
21.	1. Minimum Inhibitory Concentrations (MIC) of the volatile constituents of B.			
	luridum leaves (BLL), B. rupestris leaves (BRL), B. luridum flowers (BLF) and B. rupestris flowers (BRF) against different a range of environmental and clinically			
	pathogenic microorganisms determined by the agar diffusion			
	method.	167		

List of Figures

No	Figure	1
1.	Whole tree of <i>B. rupestris</i>	;
2.	B. rupestris leaves	;
3.	Whole tree of <i>B. luridum</i>	
4.	B. luridum flowers	
5.	Mean inhibition zones for <i>B. rupestris</i> and <i>B. luridum</i> leaves extracts and fractions using agar well diffusion method against different pathogenic bacteria and	
	fungi	
6.	Influence of the oral intake of BRT, BRE and Silymarin to CCl ₄ -treated rats on	
	serum AST (A) and ALT (B) at a dose of 50 mg/kg	
7.	Influence of the oral intake of BRT, BRE and Silymarin to CCl ₄ -treated rats on lipid peroxides (C), serum total antioxidant status TAS (D), superoxide dismutase	
	SOD (E) and catalase CAT (F) at a dose of 50 mg/kg	
8.	Influence of the oral intake of BRT, BRE and GLB to STZ-diabetic rats on serum	
	glucose (A) and serum insulin (B) at a dose of 50 mg/kg	
9.	Influence of the oral intake of BRT, BRE and GLB to STZ-diabetic rats on lipid peroxides (C), serum total antioxidant status (D), superoxide dismutase (E) and	
	catalase (F) at a dose of 50 mg/kg	
10.	Scheme showing the chromatographic fractionation of the <i>n</i> -hexane fraction	
11.	Scheme showing the chromatographic fractionation of the DCM fraction	
12.	Scheme showing the chromatographic fractionation of the ethyl acetate	
	fraction	
	Compound <u>1</u>	
13.	¹ H NMR spectrum of β -amyrin acetate	
14.	APT spectrum of β -amyrin acetate	
15.	HSQC spectrum of β -amyrin acetate	
16.	HMBC spectrum of β -amyrin acetate	

	Compounds 2	2 & <u>3</u> (mixture)	
17.		1 H NMR spectrum of β -sitosterol and stigmasterol (mixture)	117
18.		APT spectrum of β -sitosterol and stigmasterol (mixture)	118
19.		HSQC spectrum of β -sitosterol and stigmasterol (mixture)	119
20.		HMBC spectrum of β -sitosterol and stigmasterol (mixture)	120
	Compound 4		
21.		ESI ⁻ -MS spectrum of Scopoletin.	122
22.		¹ H NMR spectrum of scopoletin	123
23.		APT spectrum of scopoletin.	124
24.		HSQC spectrum of scopoletin.	125
25.		HMBC spectrum of scopoletin.	126
	Compound 5		
26.		¹ H NMR spectrum of β -sitosterol-3- <i>O</i> - β -D-glucoside	129
27.		APT spectrum of β -sitosterol-3- O - β -D-glucoside	130
28.		1 H, 1 H COSY spectrum of β-sitosterol-3- O -β-D-glucoside	131
29.		HSQC spectrum of β -sitosterol-3- O - β -D-glucoside	132
30.		HMBC spectrum of β -sitosterol-3- O - β -D-glucoside	133
	Compound 6		
31.		ESI ⁺ - MS spectrum of dihydrodehydrodiconiferyl alcohol 4- <i>O</i> -β-D-	
		glucoside	136
32.		¹ H NMR spectrum of dihydrodehydrodiconiferyl alcohol 4- <i>O</i> -β-D-	
		glucoside	137
33.		APT spectrum of dihydrodehydrodiconiferyl alcohol 4- <i>O-β</i> -D-	
		glucoside	138
34.		HSQC spectrum of dihydrodehydrodiconiferyl alcohol 4- <i>O-β</i> -D-	
		glucoside	139
35.		HMBC spectrum of dihydrodehydrodiconiferyl alcohol 4- <i>O</i> -β-D-	
		glucoside	140

	Compound 7	
36.	¹ H NMR spectrum of dihydrodehydrodiconiferyl alcohol 9- <i>O</i> -β-D-	
	glucoside	143
37.	APT spectrum of dihydrodehydrodiconiferyl alcohol 9- O - β -D-	
	glucoside	14 4
38.	HSQC spectrum of dihydrodehydrodiconiferyl alcohol 9-O-β-D-	
	glucoside	145
39.	HMBC spectrum of dihydrodehydrodiconiferyl alcohol 9-O-β-D-	
	glucoside	146
40.	Compounds isolated from <i>B.rupestris</i> leaves methanol extract	147
41.	LC-ESI-MS profiling of the ethyl acetate fraction of <i>B. rupestris</i> leaves	151
42.	Structures of secondary metabolites identified in the ethyl acetate fraction from	
	leaves of B. rupestris using LC-ESI-MS profiling	152
43.	2D and 3 D binding mode of quercetin-3- O -(6"- O - α -L-rhamnopyranosyl)- β -D-	
	glucoside (7) in the active site of HPA	154
44.	2D and 3 D binding mode of quercetin-3- O -(6"- O - α -L-rhamnopyranosyl)- β -D-	
	glucoside (7) in the active site of HAG.	154
45.	GC-chromatograms obtained with a Rtx-5MS column of the volatile constituents	
	isolated by hydrodistillation from (A) B. luridum leaves, (B) B. rupestris leaves, (C)	
	B. luridum flowers and (D) B. rupestris flowers	158
46.	Clustering dendrogram of the various replicates of B. rupestris leaves (BRL1, BRL2	
	and BRL3) and flowers (BRF1, BRF2 and BRF3) and B. luridum leaves (BLL1,	
	BLL2 and BLL3) and flowers (BLF1, BLF2 and BLF3) using hierarchical cluster	
	analysis technique (HCA).	162
47.	A score plot of PC1 versus PC2 scores obtained by PCA of B. rupestris leaves	
	(BRL1, BRL2 and BRL3) and flowers (BRF1, BRF2 and BRF3) and B. luridum	
	leaves (BLL1, BLL2 and BLL3) and flowers (BLF1, BLF2 and BLF3) using	
	GC/MS and GC/FID chromatograms (n = 3), PC1= 73% and PC2 = 17%	162
48.	A loading plot of PC1 versus PC2 scores obtained by PCA of B. rupestris leaves	
	(BRL1, BRL2 and BRL3) and flowers (BRF1, BRF2 and BRF3) and B. luridum	

	leaves (BLL1, BLL2 and BLL3) and flowers (BLF1, BLF2 and BLF3) using	
	GC/MS and GC/FID chromatograms (n = 3), PC1= 73% and PC2 = 17%	163
49.	PCA - Map of the variables as a function of PCA components PC1 and PC2	
	revealing the correlation among various loadings.	163
50.	Heat map of B. rupestris leaves (BRL1, BRL2 and BRL3) and flowers (BRF1,	
	BRF2 and BRF3) and B. luridum leaves (BLL1, BLL2 and BLL3) and flowers	
	(BLF1, BLF2 and BLF3) describing the quantity of their volatile constituents as	
	revealed by GC/MS and GC/FID analysis.	164

List of Abbreviations

A Absorbance

A549 Human lung carcinoma cell lines

ADP Adenosine diphosphate

AIDS Acquired immune deficiency syndrome

ALT Alanine aminotransferase

Amp Ampicillin

Amph Amphotericin B

ANOVA One-way analysis of variance

APT Attached proton test

AST Aspartate aminotransferase

ATCC American type culture collection

ATP Adenosine triphosphate

B Brachychiton

BHT *tert*-Butyl-1-hydroxytoluene

BLD Brachychiton luridum leaves dichloromethane fraction

BLE Brachychiton luridum leaves ethyl acetate fraction

BLF Brachychiton luridum flowers essential oil

BLH Brachychiton luridum leaves n-hexane fraction

BLL Brachychiton luridum leaves essential oil

BLT Brachychiton luridum leaves total extract

BRB Brachychiton rupestris leaves n-butanol fraction

BRD Brachychiton rupestris leaves dichloromethane fraction

BRE Brachychiton rupestris leaves ethyl acetate fraction

BRF Brachychiton rupestris flowers essential oil

BRH Brachychiton rupestris leaves n-hexane fraction of