

Evaluation of Pulmonary artery Pressure in Patients with Chronic Renal Failure

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

Presented by

Omnya Magdy Tawfeek Ahmed

(M.B.B.Ch. Ain Shams University)

Supervised by

Prof. Dr. Taher Abdelhamid EL-Naggar

Professor of Chest Diseases and Tuberculosis Faculty of Medicine, Ain Shams University

Dr. Ayman Mortada Abdelmotlb

Assistant Professor of Cardiovascular Diseases Faculty of Medicine, Ain Shams University

Dr. Ashraf Adel Gomaa

Assistant Professor of Chest Diseases and Tuberculosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

قیاس ضغط الشریان الرئوی لدی مرضی الفشل الکلوی المزمن

رسالة

توطئة للحصول على درجة الماجستير في الامراض الصدرية والتدرن مقدمة من

أمنية مجدى توفيق احمد/الطبيبة بكالوريوس الطب و الجراحة - كلية الطب جامعة عين شمس

تحت إشراف

أد/ طاهر عبدالحميد النجار

أستاذ الأمراض الصدرية و التدرن كلية الطب- جامعة عين شمس

د/أيمن مرتضى عبدالمطلب

أستاذ مساعد امراض القلب والاوعية الدموية كلية الطب- جامعة عين شمس

د/ أشرف عادل جمعه

أستاذ مساعد الأمراض الصدرية و التدرن كلية الطب- جامعة عين شمس كلية الطب جامعة عن شمس

7.11

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I would like to express my great appreciation to **Prof. Dr. Taher Abdelhamid EL-Naggar**, Professor of chest diseases, Faculty of Medicine, Ain Shams University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work. His time and supreme effort are clear in every part of this work. Many thanks &gratitude for him.

I am deeply grateful to **Dr. Ashraf Adel Gomaa**; Assistant Professor of Chest Diseases and Tuberculosis- Ain Shams University; for his great directions & continuous advice all through the work.

I would like to thank **Dr. Ayman Mortada Abdelmotlb**; Assistant Professor of cardiovascular diseases, faculty of medicine, Ain Shams University; for his great help, efforts and continous advice through out the whole work..

Contents

Subjects	Page
• List of Abbreviations	I
List of table	III
List of Figures	IV
• Introduction	1
Aim of the Work	2
Review of literature:	
Chapter 1: Pulmonary hypertension	3
Chapter 2: Respiratory Considerations in th Patient With Renal Failure	
Chapter 3: Pulmonary hypertension in patients wit Chronic Kidney Disease	
Patients and methods	74
Results	77
• Discussion	90
Summary & Conclusion	98
Recommendations	100
References	101
Arabic Summary	

List of Abbreviations

6MWD : Six-minute walk distance

ALI : Acute lung injury

APAH : Assciated Pulmonary arterial hypertension

AVF : Arteriovenous fistula

BAS : Balloon atrial septostomy

CCB: Calcium Channel Blocker

CHD : Cyanotic Heart Disease

CKD : Chronic kidney disease

CO : Cardiac output

COPD : Chronic obstructive pulmonary disease

CT : Computed tomography

CTD : Connective Tissue Disease

CTEPH: Chronic thromboembolic pulmonary hypertension

DLCO: Diffusion capacity for carbon monoxide

ERA : Endothelin receptor antagonists

ESRD: END stage renal disease

FPAH: Familial form of idiopathic Pulmonary arterial

hypertension

HIV : Human immunodeficiency virus

INR: International normalized ratio

IPAH : Idiopathic Pulmonary arterial hypertension

■ List of Abbreviations

LHD: Left Heart Disease

MPAP: Mean Pulmonary artery Pressure

NDD : Non dialysis dependant

NIH : National Institutes of Health

NO : Nitric oxide

NOSII : Nitric oxide synthase II

PAOP: Pulmonary artery occlusion pressure

PCH: Pulmonary capillary hemangiomatosis

PGI2 : Prostaglandin I2

PHT: Pulmonary arterial hypertension

PoPH: Porto-pulmonary hypertension

PPH: Primary Pulmonary arterial hypertension

PPHN: Persistent pulmonary hypertension of the newborn

PVOD: Pulmonary veno-occlusive disease

PVR : Pulmonary vascular resistance

RAP: Right atrial pressure

RCT : Randomized controlled trial

RHC: Right heart catheterisation

RV : Right ventricule

SPAP : Systolic pulmonary artery pressure

TAPSE: Tricuspid Annular Plane Systolic Excursion

TR: Tricuspid regurgitation

∠List of Abbreviations

TRV : Tricuspid regurgitation Velocity

US : United States

WHO: World Health Organization

WHO FC: World health organization functional class

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	Updated Clinical Classification of Pulmonary Hypertension, Dana Point 2008	6
Table (2)	Diseases that affect both lung and kidney	50
Table (3)	Complication of chronic renal failure related to respiratory system	53
Table (4)	Demographic Characteristics of patients	77
Table (5)	Right ventricular systolic pressure among studied population	77
Table (6)	The prevalence of anemia among studied population.	78
Table (7)	The grade of nephropathy among studied population.	79
Table (8)	Prevalence of DM and HTN among studied population as a proposed cause of nephropathy.	79
Table (9)	Prevalence of HCV among studied population	80
Table (10)	The prevalence of AV shunt in dialysis patients	81
Table (11)	The duration of dialysis among studied population.	82
Table (12)	Correlation between the demographic data and RVSP.	82
Table (13)	Correlation between RVSP and Anemia among studied population	84
Table (14)	Correlation between the cause of CKD (DM or HTN) and RVSP.	84

∠List of Table

Table (15)	Correlation between the duration of dialysis and RVSP.	86
Table (16)	Correlation between HCV and RVSP.	88
Table (17)	Correlation between dialysis shunt patient and RVSP	89

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Chest x-ray of pulmonary edema.	55
Fig. (2)	Chest xray of pericardial effusion.	57
Fig. (3)	Right ventricular systolic pressure among studied population	78
Fig. (4)	Prevalence of HCV among studied population	80
Fig. (5)	The prevalence of shunt in dialysis patients	81
Fig. (6)	Correlation between the demographic data and RVSP.	83
Fig. (7)	Correlation between DM and RVSP	85
Fig. (8)	Correlation between HTN and RVSP	85
Fig. (9)	Correlation between combined (DM &HTN) and RVSP	86
Fig. (10)	Correlation between the time of duration of dialysis and RVSP	87
Fig. (11)	Correlation between HCV and RVSP	88
Fig. (12)	correlation between Shunt patient and RVSP	89

INTRODUCTION

Pulmonary hypertension is a progressive disorder complicating heart, lung or systemic diseases with increased morbidity and mortality regardless its etiology. Pulmonary arterial hypertension (PHT) is a newly recognized disease in patients with renal disease (*Unal et al.*, 2010).

In a recent review, the prevalence of PHT in end stage renal disease (ESRD) patients was reported to be around 40-50%. Pulmonary hypertension defined as systolic pulmonary artery pressure (SPAP) > 35 mmHg at rest as estimated by Doppler echocardiography has been repeatedly reported in patients with chronic renal failure both predialysis and during regular renal replacement therapy with a high but variable prevalence (*Havlucu et al.*, 2007).

Its presence has been recently suggested to be associated with a worse outcome. A number of causative factors have been related to this pathological finding: calcifications artery secondary pulmonary and hemodynamic hyperparathyroidism modification related to the creation of an arteriovenous fistula (AVF) caused by a reduced ability of pulmonary vessels to accommodate the AV access-mediated elevated cardiac output possibly because of a derangement of nitric oxideendothelin metabolism but its pathogenesis has not been completely elucidated (Yigla et al., 2009).

AIM OF THE WORK

To study pulmonary artery pressure among patients with end stage renal disease.

PULMONARY HYPERTENSION

Pulmonary hypertension (PH) is defined as a haemodynamic and pathophysiological condition characterised by an increase in mean pulmonary arterial pressure (P_{pa}) to \geq 25 mmHg at rest as measured by right heart catheterisation (RHC) (*Hoeper et al., 2013*).

Because this definition is based on hemodynamic criteria, pulmonary hypertension can be the result of a variety of diseases of different causes. Pulmonary arterial hypertension (PAH), however, should be distinctly differentiated pulmonary venous hypertension from resulting from left heart disease. PAH is characterized by pulmonary arterial pressure elevations in the pulmonary vascular resistance (PVR) leading to right ventricular failure and premature death (Ghamra and Dweik, 2003).

Thus, the definition of PAH also requires normal pulmonary artery occlusion (or wedge) pressure to exclude elevations of pulmonary artery pressure simply as a compensation for elevated pressures in the left heart. PAH is commonly caused by or associated with an underlying pulmonary, cardiac, or systemic disease (associated PAH [APAH], previously known as (secondary pulmonary hypertension). Rarely, PAH is present in the absence of an identifiable cause or associated underlying disease and is referred to as idiopathic PAH (IPAH) or primary PAH

(PPH). A familial form of IPAH (FPAH) accounts for about 6% of cases (*Ghamra and Dweik*, 2003).

The 1973 conference provided a pathology-based classification of the disease. Pulmonary hypertension was previously classified into two categories: primary or secondary, depending on the absence or presence of identifiable causes or risk factors. The diagnosis of PPH was one of exclusion after ruling out all causes of pulmonary hypertension. The second WHO conference on pulmonary hypertension, held in Evian, France, in 1998, classified pulmonary hypertension based on similarities in the clinical features and was revised in Venice, Italy, in 2003 to reflect a treatment-based approach to pulmonary hypertension classification (Simonneau et al., 2004).

Most notably, familial PAH is now referred to as heritable, with further breakdown into the genetic abnormality identified, if any. Schistosomiasis and chronic hemolytic anemia are now part of category 1 disease as associated conditions to reflect their unique importance as causative factors of PAH. Chronic thromboembolic pulmonary hypertension is no longer divided into proximal and distal, as improvements in surgical technique make this partitioning obsolete (*Simonneau et al.*, 2009).

Finally, the miscellaneous category is expanded, and now includes many conditions previously included in the "others" category of associated PAH. The latter change