Serum Neopterin Level in Children with Juvenile Idiopathic Arthritis

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Sara Mohammed Sayed Ahmed Dower

M.B.B.Ch. (2009) Faculty of Medicine, Ain Shams University

Wnder Supervision of Prof. Dr. Mohamed Hesham Mohamed Ezzat Abdelhameed

Professor of Pediatrics
Pediatric Allergy and Immunology Unit
Faculty of Medicine, Ain Shams University

Prof. Dr. Sahar Samir Abd El Maksoud

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Hanan Mohamed Abd El Lateef

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First and foremost, I feel always indebted to **ALLAH** the Most Kind and Most Merciful.

I would like to express my endless gratitude and appreciation to my eminent professor, **Prof. Dr. Mohamed Hesham Mohamed Ezzat Abdelhameed,** Professor of Pediatrics, Pediatric Allergy and Immunology Unit- Faculty of Medicine- Ain Shams University, for giving me the honor to work under his supervision and from whom I did learn a lot. He encouraged me, removed all the obstacles from my way and pushed me to achieve success.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sahar Samir Abd El Maksoud,** Professor of Clinical Pathology, Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

My sincere thanks to **Dr. Hanan Mohamed Abd El Lateef,** Lecturer of Pediatrics, Faculty of Medicine- Ain
Shams University, for her continuous guidance, honest help
and endurance that made this thesis come to light.

My cordial thanks are due to all my family members for their continuing support and endless love.

Last but not least my sincere gratitude and appreciation are due to those who kindly agreed to participate in this study.

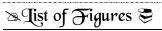
Contents

Title	Page No.
List of Abbreviations	1
List of Tables	III
List of Figures	V
Introduction	1
Aim of the Work	3
Chapter (1): Neopterin	4
Chapter (2): New Modalities in	Treatment of JIA25
Subjects and Methods	41
Results	48
Discussion	71
Recommendations	78
Summary	79
References	82
Arabic Summary	-

List of Abbreviations

ACR	American College of Rheumatology
ADHD	Attention deficit hyperactive disorder
ANA	Antinuclear antibody
bDMARD	Biological disease-modifying anti-rheumatic drugs
CAD	Coronary Acute Disease
CMI	Cell-mediated immunity
CRP	C-reactive protein
CS	Corticosteroids
csDMARD	Conventional synthetic disease-modifying antirheumatic drugs
CVD	Cardiovascular disease
CSF	Cerebrospinal fluid
DMARD	Disease-modifying antirheumatic drugs
EBV	Epstein-Barr virus
ELISA	Enzyme-Linked Immunosorbent Assay
EPTB	Extrapulmonary tuberculosis
ESR	Erythrocyte sedimentation rate
EULAR	European League Against Rheumatism
Hb	Hemoglobin
HDLC	High density lipoprotein cholesterol
HF	Heart Failure
HFpEF	HF with preserved left ventricular ejection fraction
HIV	Human Immunodeficiency Virus
HLH	Hemophagocytic lymphohistiocytosis

≥ List of Abbreviations ≥


IBD	Inflammatory Bowel Disease
IDO	Indoleamine 2,3 dioxygenase
IFN	Interferon
IL	Interleukin
IL-1ra	IL-1 receptor antagonist
ILAR	International League of Associations for Rheumatology
JIA	Juvenile idiopathic arthritis
MAS	Macrophage activation syndrome
MTX	Methotrexate
NSAIDs	Nonsteroidal anti-inflammatory drugs
PLT	Platelet
QFT-G	QuantiFERON-TB-Gold
RA	Rheumatoid arthritis
SC	Subcutaneous
SDAI	Simplified Disease Activity Index
SLE	Systemic lupus erythematosus
SoJIA	Sysytemic onset juvenile idiopathic arthritis
ТВ	Tuberculosis
TCZ	Tocilizumab
TH1	T helper 1
TLC	Total leucocytic count
TNFi	Tumor necrosis factor inhibitor

List of Tables

Table	Title	Page
1	ILAR criteria for diagnosis of SoJIA	41
2	SDAI score for assessment of JIA activity	44
3	Characteristics of the 3 studied groups	48
4	Hypertension as an associated comorbidity	49
5	ANA marker assay	49
6	Treatment modalities in Group AI and Group AII	50
7	TLC in the activity and remission states among patients	51
8	Platelet count in the activity and remission states among patients	53
9	ESR levels in the activity and remission states among patients	54
10	CRP levels in the activity and remission states among patients	56
11	Neopterin levels among patients during activity and controls	57
12	Neopterin levels in the activity and remission states among all patients	59
13	Neopterin levels among patients in the remission states and controls	61
14	Neopterin levels in both the activity and remission states and decline values among patients in each group	63
15	Relation between neopterin level in the activity and remission states with different	65

≥ List of Tables €

Table	Title	Page
	modalities of treatment	
16	Correlation between different modalities of treatment and the value of neopterin decline post-treatment	66
17	Neopterin levels in the activity and remission states and patients' sex	67
18	Correlation between neopterin level in the activity and remission states and patients' age	67
19	Correlation between neopterin and TLC, PLT, ESR, and CRP in the activity state	68
20	Correlation between neopterin and TLC, PLT and ESR in the remission state	69
21	ROC curve between Group A in activity and Group B	69

List of Figures

Figure	Title	Page
1	Role of proinflammatory cytokines and their effects on enzymatic pathways responsible for tryptophan degradation and neopterin formation	5
2	Phases of treatment	33
3	Distribution of treatment modalities among all patients	50
4	TLC in both activity and remission states among patients	52
5	Platelet count in the activity and remission states among patients	53
6	ESR levels in the activity and remission states among patients	55
7	CRP levels in the activity and remission states among patients	56
8	Neopterin levels among patients during activity and controls	58
9	Neopterin levels in the activity and remission states among all patients	60
10	Neopterin levels among patients in the remission states and controls	62
11	Neopterin levels in the activity and remission states among patients in each group	64
12	ROC curve for sensitivity of neopterin	70

Introduction

Juvenile idiopathic arthritis (JIA) is generally considered a clinical syndrome involving several disease subsets, with a number of inflammatory flows, leading to an eventual common pathway in which persistent synovial inflammation and associated damage to articular cartilage and underlying bone are present (Shady et al., 2015).

Many biological therapies are now available for patients with rheumatoid arthritis (RA) who have an inadequate response to synthetic disease modifying anti-rheumatic drugs (DMARDs) especially methotrexate (Viatte et al., 2012).

The 2015 American College of Rheumatology (ACR) treatment guideline addresses the use of DMARDs, biologics, tofacitinib, and glucocorticoids in early and established RA. It is also recommended to use various treatment approaches in frequently encountered clinical scenarios, including treat-to-target, switching between therapies, tapering of therapy, the use of biologics and DMARDs in high-risk RA patients (**Singh et al., 2016**).

Neopterin is a pyrazino-pyrimidine compound that is synthesized by monocytes and macrophages in response to interferon (IFN) which is produced by activated T-cells. It is a marker of cellular immune response, and levels are elevated in conditions of T-cell or macrophage activation, including autoimmune diseases such as systemic lupus erythematosus and JIA (Shady et al., 2015).

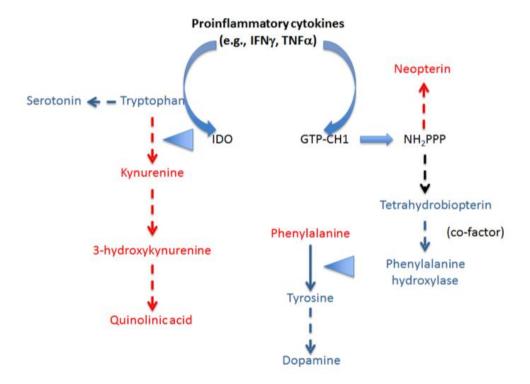
Neopterin is found at increased levels in biological fluids from individuals with inflammatory disorders. Due to its capacity to increase hemeoxygenase-1 content, it has been proposed as a protective agent during cellular stress (Ghisoni et al., 2016).

Neopterin is a biologically stable metabolite, which gives an advantage of its detection in assessing the activity of the immune response (**Dudina et al., 2014**). An association between CRP and ESR levels as well as neopterin concentrations has been shown already earlier in patients with many diseases such as cardiovascular disease and malignancies as well as in patients with RA (**Kurz et al., 2011**).

Neopterin is accepted as an immunologic marker and an indicator of activation of the immune system (**Tuncer et al., 2015**). Neopterin levels in patients with active RA are noted to be accentuated (**Arshadi et al., 2013**).

Aim of the Work

This study aims to assess serum level of neopterin in patients with Juvenile Idiopathic Arthritis (JIA) in relation to the disease activity, severity and response to conventional and biological therapy.


Neopterin

Neopterin is a marker of immune activation, which is produced by monocyte/macrophages in response to inflammation (**Oweira et al., 2016**). It is accepted that neopterin is an immunologic marker and an indicator of activation of the immune system (**Tuncer et al., 2015**).

Neopterin is a valuable biomarker of cell mediated immunity. It is a pyrazino-pyrimidine compound belonging to the class of pteridine with a molecular weight of 253D. It is produced before the onset of symptoms in adverse conditions, like chronic infection (**Shubhangi et al., 2015**).

Neopterin is a reliable marker in the assessment of the rate of IFN- γ production. Levels of neopterin increase in direct proportion with the level of interferon. Therefore, estimation of neopterin is helpful in the monitoring of the activity of IFN- γ inducible inflammation (**Chuang et al.**, **2016**).

Neopterin is an unconjugated pteridine, which has a potential function in the inflammation process (**Palabiyik** et al., 2016). Neopterin is a prognostic indicator for cell-mediated immunity (CMI) and chronic infection (**Shubhangi et al., 2015**).

Figure (1): Role of proinflammatory cytokines and their effects on enzymatic pathways responsible for tryptophan degradation and neopterin formation. Abbreviations: CH1, cyclohydrolase 1; IDO, indoleamine 2,3 dioxygenase; IFN- γ , interferon- γ , NH2PPP, 7,8-dihydroneopterin triphosphate; TNF- α , tumor necrosis factor- α (Capuron et al., 2011).

Increased serum neopterin concentration is a sensitive marker of activation of cell-mediated immunity and T cell activation. Increased neopterin levels in body fluids of patients are observed in diseases with activated cell mediated (=TH1-type) immune response such as malignant tumors, allograft rejection, autoimmune disorders, or virus infections, also neopterin concentrations

increase in neurodegenerative diseases and during pregnancy (Zeng et al., 2016).

Estimation of neopterin levels may also be helpful in following the evolution of specific inflammatory conditions (e.g., systemic inflammatory diseases, autoimmune diseases, viral infection, renal transplant rejection, and nephritic syndrome) (Zeng et al., 2016).

Levels of neopterin increase in biological fluids of individuals with inflammatory disorders. Due to its capacity to increase hemeoxygenase-1 content, it is considered as a protective agent during cellular stress (Ghisoni et al., 2016).

Elevated neopterin concentration in biological body fluids is an indicator of cellular innate immune response (Volgger et al., 2016).

Neopterin also has an important role in the modulation of processes mediated by oxygen radicals and in the activation of the reactive oxygen species (**Shubhangi et al., 2015**).

High neopterin levels are associated with conditions of increased production of reactive oxygen species, thereby neopterin is also an indicator for oxidative stress due to activation of immune system (Chuang et al., 2016).

Neopterin levels increase in cerebrospinal fluid and plasma during immune system activation or as a result of damage, or infection (**Ghisoni et al., 2015**).

It was indicated that both oxidative stress and inflammation are important processes in the destruction of synovial tissue in rheumatoid arthritis patients. Systemic inflammatory markers, oxidative stress, and neopterin levels are related to the severity of the disease in rheumatoid arthritis (Shahmohamadnejad et al., 2015).

Articular inflammation causes activation and proliferation of the synovial lining, expression of inflammatory cytokines, and B cell activation with autoantibody production. Altered cytokine and signal transduction pathways and inhibition of programmed cell death contribute to synoviocyte- and osteoclast-mediated cartilage and bone destruction (**Ozkan et al., 2012**).

Auto reactive T cells in JIA produce different types of cytokines which cause subsequent activation of innate immunity cells, where neopterin is synthesized from guanosine triphosphate by macrophages (**Arshadi et al.**, **2013**).

Among all variable mechanisms, Tryptophan degradation, IDO activity, and neopterin pathway could be