Study of Pulmonary Tuberculosis in Type 2 Diabetes in Reference to Clinical, Radiological Presentation and Response to Treatment

Thesis

Submitted for Partial Fulfillment of master Degree In Chest Diseases

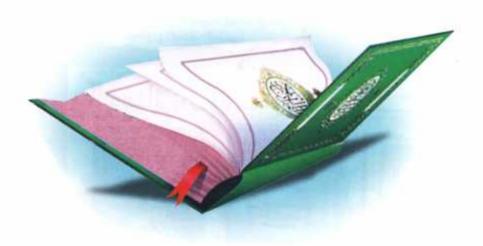
By
Nermin Mohammed Samy El-Said Hussien
M.B.B.Ch

Supervised by

Prof. Mohammed Ali Farrag

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Assist. Prof. Ibrahim Ali Dwedar


Assist. Professor of Chest Diseases Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2018

بسرائله الرحمن الرحير

" رَبِّ أُورْضِنِي أَنْ أَشْكُرَ نِعْمَتَكَ (لَّتِي أَنْعَمْتَ عَلَيَّ وَرَائِنْ أَشْكُرَ نِعْمَتَكَ (لَّتِي أَنْعَمْتَ عَلَيَّ وَكَانْ أَعْمَلُ صَالِمًا تَرْضَاهُ وَلَافْخِلْنِي وَعَلَى وَلَائِرِيَّ وَلَانْ أَعْمَلُ صَالِمًا تَرْضَاهُ وَلَافْخِلْنِي بِمَاوِكَ (الصَّالِحِينَ " برَحْمَتِكَ فِي عِبَاوِكَ (الصَّالِحِينَ "

صدق الله العظير النمل (١٩)

Acknowledgment

First of all and above all great thanks to ALLAH whose blessings on me cannot be counted.

I would like to express my true and full gratitude to Prof. Dr. Mohammed Ali Farrag, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for giving me best effort and time throughout the whole work. No words can be sufficient to express my gratitude for his excellent supervision and generous care. Indeed, this work is the outcome of his deep interest, patience, valuable suggestion and stimulating discussion.

I am deeply indebted to Dr. Ibrahim Ali Dwedar, Assistant Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, whose infinite patience, meticulous care and constant supervision have always overcame any obstacle in this work. Really, his valuable advice and useful guidance that made the accomplishment of this work possible.

At last, I would like to express my profound gratitude to my family specially my parents and my husband for their endless love I concern.

Contents

	Pag
	es
List of Abbreviations	Ι
List of Tables	VI
List of Figures	X
Introduction	1
Aim of the Work	5
Review of Literature	6
•	6
hapter 1 (Tuberculosis)	
•	75
hapter 2 (Diabetes Mellitus)	
•	87
hapter 3 (Type 2 DM and tuberculosis)	
Subjects and Methods	96
Results	101
Discussion	125
Summary	140
Conclusions	144
Recommendations	145
References	146

Arabic summary	-

List of Abbreviations

AD: Adenosine Deaminase.

ADA: American Diabetic society

AECs: airway epithelial cells

AFB: Acid-Fast Bacilli.

AGEs: Advanced glycation end products.

Ags: Antigen

AIDS: Acquired Immune Deficiency Syndrome

ASL: airway surface liquid

ATS: American Thoracic Society

BCG: Bacille Calmette-Guerin.

BMI: Body mass index

BMM: Broth Micro-Dilution Method.

BTB: bovine tuberculosis

CBC: complete blood picture

CDC: Centers for Disease Control & Prevention.

CFT: Complement Fixation Tests.

CI: Confidence Interval.

CLRs: C-type lectin receptors

CVS: cardiovascular disease

DC: dendritic cell

DKA: Diabetic ketoacidosis

DM: Diabetes mellitus

DMTB: Diabetes mellitus with TB

DNA: Deoxyribonucleic acid

DNA: Deoxyribonucleic Acid.

DOTS: Direct Observed Therapy Strategy.

DST: Drug susceptibility testing

E: Ethambutol.

EF: Efficiency.

ELISA: Enzyme-Linked Immuno-Sorbent Assay.

ELISPOT: Enzyme-Linked Immunospot.

EMB: Ethambutol

ESR: Erythrocyte sedimentation rate

FBG: Fasting blood glucose

FDA: Food and drug administration

GC: Growth Control

GDA: German Diabetes Association

GSH: L-Glutathione reduced form

GSSG: L-Glutathione oxidized form

HAT: Haemagglutination tests.

HbA1c: Hemoglobin A1c

HIV: Human Immunodeficiency Virus

HTN: Hypertension

IAPP: Insulin associated amyloid polypeptide

IFA: Immuno-Flurescent assay.

IFG: Impaired fasting glycaemia

IGRA: Interferon release assay.

IL: interlukin

IM: Intramuscular.

INF: Interferon gamma.

INH: Isoniazide

iNOS: Inducible nitric oxide synthase

IV: Intravenous

LADA: Latent autoimmune diabetes of adult

LAM: lipo-arabino-manann

LAM: Lipoarabinomannan

LCR: Ligase chain reaction.

LiPA: Line Probe assay.

LJ: Lowenstein-Jensen.

Lzd: Linezolid.

M: Mycobacterium.

MAC: Mycobacteria avium-intracellulare complex.

MAIT: Mucosal-associated invariant T cells

MALDI-TOF MS: Matrix-assisted laser desorption/

ionization time-of-flight mass

MDR-TB: Multi-Drug-Resistant Tuberculosis.

MDR-TB: Multi-Drug-Resistant Tuberculosis.

MGIT: Mycobacterial Growth Indicator Tube

MOTT: Mycobacteria Other Than Tubercle bacilli.

MTB: Mycobacterium tuberculosis

MTBC: Mycobacterium tuberculosis

NAA: Nucleic acid amplification

NADPH: Nicotinamide adenine dinucleotide phosphate

NEFA: non-esterified fatty acids

NK: Natural killer

NOD2: Nucleotide-binding oligomerization domain-

containing protein 2

NTM: Non tuberculous mycobacteria

NTM: Non Tuberculous Mycobacteria.

OGTT: oral glucose tolerance test

P: Pyrazinamide.

P-A: Postero-anterior.

PAD: Peripheral arterial disease

PAS: P-Amino Salicylic acid.

PBMCs: peripheral blood mononuclear cells

PCR: Polymerase Chain Reaction.

PPBG: Post prandial blood glucose

PPD: Purified Protein Derivative.

PPT: Post primary tuberculosis

PRR: Pathogen recognition receptor

PTB: Pulmonary tuberculosis

PZA: Pyrazinamide.

R: Rifampicin.

RBG: Random blood glucose

RFLP: Restriction Fragment Length Polymorphism

RIF: Rifampicin

RNA: Ribonucleic acid

RNS: Reactive nitrogen species

ROS: Reactive oxygen species

rRNA: Ribosomal RNA

S. aureus: Staphylococcus aureus

S: Streptomycin.

S: Svedberg unit

SCC: Short Course Chemotherapy.

SD: Standard Deviation

TB: Tuberculosis

TGF: Transforming growth factor

Th: T helper

TLR: Toll like receptor

TNF: Tumor necrosis factor

WHO: World Health Organization.

Z.N: Zhiel-Neelsen acid-fast stain

List of Tables

Table No.		Pages
Table 1:	WHO country data	10
Table 2:	Epidemiological factors	11
Table 3:	Factors that influence the clinical	13
	features of tuberculosis (American	
	thoracic society, 2000a)	
Table 4:	TB x-rays	68
Table 5:	Doses and adverse effects of	72
	antituberculosis medications	
Table 6:	Differential diagnostic criteria for	84
	type 1 and type 2 diabetes	
Table 7:	Comparison between group1 and	101
	group 2 as regard age, weight	
Table 8:	Comparison between group1 and	102
	group 2 as regard of gender	
Table 9:	Comparison between group1 and	103
	group 2 as regard of the special	
	habits	
Table 10:	Comparison between group1 and	104
	group 2 as regard diagnosis	
Table 11:	Comparison between group1 and	104

	group 2 as regard symptoms	
T 11 10		106
Table 12:	Comparison between group1 and	106
	group 2 as regard to the site of the	
	lesions in x-rays	
Table 13:	Comparison between group1 and	108
	group 2 as regard to the type of the	
	lesions	
Table 14:	Comparison between group1 and	110
	group 2 as regard to extension	
Table 15:	Comparison between group1 and	111
	group 2 as regard to line of	
	treatment	
Table 16:	Comparison between group1 and	111
	group 2 as regard smear conversion	
Table 17:	Comparison between group1 and	113
	group 2 as regard to response and	
	outcome	
Table 18:	Comparison between diabetic state	114
	in patients of group 1 and smear	
	conversion	
Table 19:	Comparison between diabetic state	115
	in patients of group 1 and its	
	relation to outcome	

Table 20:	Comparison between group1 and	116
	group 2 as regard to FBG and PPG	
Table 21:	Comparison between group1 and	117
	group 2 as regard to complete blood	
	pictures and ESR	
Table 22:	Comparison between group1 and	118
	group 3 as regard to age and weight	
Table 23:	Comparison between group1 and	119
	group 3 as regard to duration of type	
	2 DM	
Table 24:	Comparison between group1 and	119
	group 3 as regard to gender	
Table 25:	Comparison between group1 and	120
	group 3 as regard special habits	
Table 26:	Comparison between group1 and	121
	group 3 as regard to DM control	
	according to Hba1c levels	
Table 27:	Comparison between group1 and	122
	group 3 as regard to presence of any	
	complication	
Table 28:	Comparison between group1 and	122
	group 3 as regard to treatment	
Table 29:	Comparison between group1 and	123

	group 3 as regard blood glucose	
	profile	
Table 30:	Comparison between group1 and	123
	group 3 as regard to CBC profile	
Table 31:	Comparison between group1 and	124
	group 3 as regard to ESR	

List of Figures

Figure No.		Pages
Figure (1)	Age and gender incidence (who,	13
	2016).	
Figure (2):	Principal mechanisms of t-	53
	lymphocyte	
Figure (3):	Pathogenesis of TB	56
Figure (4)	Principle cell types and cytokines	59
	involved in competent granuloma	
	formation	
Figure (5):	Diagnostic flow chart (glucose	86
	mg/dl)	
Figure (6)	Glutathione ratio affects in	95
	intracelllar bacterial control	
Figure (7):	Comparison between group 1 and 2	101
	according to the age	
Figure (8):	Comparison between group1 and	105
	group 2 according to symptoms	
Figure (9):	Comparison between group1 and	107
	group 2 as regard to the site of the	
	lesions in X-rays	
Figure (10):	Comparison between group1 and	109
	group 2 as regard to the type of the	