Prevalence of Cesarean Section Niche in Women with Unexplained Abnormal Uterine Bleeding

Thesis

Submitted for the Partial Fulfillment of the Master's Degree in Obstetrics and Cynecology

By

Ismail El-Husen Abbas El-Dawa

(M.B.B.Ch), 2009

Faculty of Medicine - Ain Shams University Resident of Obstetrics and Gynecology Biala Central Hospital

Under the Supervision of

Prof. Mohamed Ibrahim Mohamed Amer

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mortada El-Sayed Ahmed

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgement

First of all I thank **Allah** for his great mercy and help to complete this work.

I would like to express my deepest gratitude and sincere appreciation to **Dr. Mohamed Ibrahim Mohamed Amer**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University and **Dr. Mortada El-Sayed Ahmed**, Lecturer in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for their continuous encouragement and valuable advice to bring this work to light.

I would like to express my deepest appreciation to the Early Cancer Detection Unit for continuous help and support.

I would like to thank all patients for their patience, cooperation and for helping me to complete this work.

And last but, by no means least, I would like to thank my family for all their patience, love, support and sacrifice which made this work possible.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ismail El-Husen Abbas El-Dawa

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	5
Review of Literature	
❖ Cesarean Section Niche	6
❖ Treatment of CS Niche	26
 Menstrual Problems and Abnormal Uterine F 	3leeding 33
* Hysteroscopy	51
Patients and Methods	71
Results	84
Discussion	96
Summary	102
Conclusion	104
Recommendations	105
References	106
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACOG	American College of Obstetrician and
	Gynecologists
<i>AUB</i>	Abnormal uterine bleeding
<i>BFGF</i>	Basic fibroblast growth factor
<i>BMI</i>	Body mass index
<i>BTB</i>	Break through bleeding
CE-MRI	Contrast-enhanced magnetic resonance imaging
<i>CI</i>	Confidence interval
<i>CS</i>	Cesarean section
<i>CSD</i>	Cesarean scar defect
<i>CTGF</i>	Connective tissue growth factor
<i>GIS</i>	Gel instillation sonohysterography
<i>HMB</i>	Heavy menstrual bleeding
<i>HPMB</i>	Heavy and prolonged menstrual bleeding
<i>HSC</i>	Hysteroscopy
<i>IMB</i>	Intermenstrual bleeding
<i>LUS</i>	Lower uterine segment
<i>LUS</i>	Lower uterine segment
OR	Odd ratio
<i>PCDS</i>	Previous cesarean delivery scar
<i>PDGF</i>	Platelet derived growth factor
<i>PMB</i>	Post menopausal bleeding
<i>RR</i>	Relative risk
SCSH	Saline contrast Sonohysterography
SCSH	Saline contrast sonohysterography
<i>SHG</i>	Sonohysterography
<i>SIS</i>	Saline instillation sonohysterography
<i>TOL</i>	Trial of labour
TOLAC	Trial of labour after cesarean
TVS	Transvaginal ultrasound
<i>WHO</i>	World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	Rate of uterine rupture according type and location of previous utering incision	ne
Table (2):	Range of normal menstrual cycle	34
Table (3):	Demographic data of the stu-	-
Table (4):	Duration and form of abnormal bleeding and prevalence of associated paint disorders	ful
Table (5):	Sonographic findings	88
Table (6):	Hysteroscopic findings	89
Table (7):	Comparison between patients with a without niche using hysteroscopy	
Table (8):	Accuracy of US for diagnosis of nice versus hysteroscopy as the gol standard method	ld-

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Image of a niche using transvaginal ultrasor in mid-sagittal and transversal plane and schematic diagram of a niche and hysterosor image	d a opic
Figure (2):	Laparoscopic view on a mucus-containing la	arge
Figure (3):	niche that is located in the lower cervix	the the ions
	between the scar and the abdominal wall i retroflexed uterus	
Figure (4):	Laparoscopic image of a uterus with a large ni illumination of the hysteroscopic light in the ni can be seen directly under the adhesions attac	che, iche
	to the niche	
Figure (5):	Laparoscopic view on adhesions between the lo uterine segment and the bladder at the site	of a
Figure (6):	niche	ean rior
Figure (7):	uterine segment behind cervical inner os Niche surface during hysteroscopic evaluation proximal part of the niche, several small vest	n of sels
Figure (8):	that easily bleed can be visualized Hysterosalpingogram in 40-year-old wor shows medium-sized CS scar defect arising fr	nan
	left lower uterine cavity wall	
Figure (9):	Hysterosalpingogram in 40-year-old wor shows large CS scar defect at uterine isthmus	
Figure (10):	Hysterosalpingogram in 37-year-old wor shows linear CS scar defect at uterine isthmu	nan
Figure (11):	Hysterosalpingogram shows CS scar defearising from left lower uterine cavity wall	ect
Figure (12):	Sonohysterographic visualization of a niche	
Figure (13):	Ultrasound images from the same woman be and at Saline contrast sonohysterography (SCS	fore
Figure (14):	Longitudinal ultrasound image of a ute Showing a myometrial discontinuity in	erus
	lower uterine segment.	

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (15):	Longitudinal sonogram showing the ut defect, Sonographic evaluation of the lo		
	uterine segment in patients with pre-		
	cesarean delivery		24
Figure (16):	Uterine niche noted in uterus with prior cesa	arean	
	delivery by saline Sono-hysterography		24
Figure (17):	The visualization of the CS scar du	ıring	
	transvaginal ultrasound		25
Figure (18):	Normal anteverted uterus showing	${ m the}$	
	hyperechoic bladder wall and hypoe	choic	
	myometrial muscle		
Figure (19):	Hysteroscopic view of CS niche		
Figure (20):	Laparoscopic view of CSD		
Figure (21):	Laparoscopic view of cervical dilator		
Figure (22):	Bladder dissection.		
Figure (23):	Use of a cervical dilator		
Figure (24):	Excised CSD		
Figure (25):	Laparoscopic view following repair of CSD		
Figure (26):	Views following repair of CSD		31
Figure (27):	Menstrual cycle phases and approxi		
	hormonal profile of estrogen and progestero		
Figure (28):	Components of PALM-COIEN system		37
Figure (29):	Endometrial polyp diagnosed by (A) TVS SCSH (C) HSC		41
Figure (30):	Polypoid appearing endometrium	by	
	hysteroscopy		41
Figure (31):	Adenomyosis by TVS; Enlarged uterus	with	
	thickened posterior wall and hypoechoic li	inear	
	striations, "rain in the forest" appearance		
Figure (32):	FIGO classification of uterine fibroids		44
Figure (33):	Parts of telescope and viewing objective len	ses 0	
	and 30 degrees		52
Figure (34):	A dual-channel operating sheath is constru		
	with (1) isolated channel for a telescope, (2		
	3) two operating devices, and (4) dister-	ding	
	medium		53
Figure (35):	Surgical instruments A: Biopsy forcepa		
	Crocodile-jawed forceps C: Scissors D: Gras		
	forceps		54

List of Figures (Cont...)

Fig.	No.	Title Page	No.
Figu	re (36):	Typical instruments feature two sheaths, one	
		for irrigation and another for suction	
Figu	re (3 7):	Karl Storz flexible hysteroscope	55
Figu	re (38):	A: The mechanism action of the Versapoint	
		bipolar electrode is illustrated The saline	
		medium facilitates the conduction of current	
		between the two poles. B: Several bipolar	
		electrodes	57
Figu	re (39):	(A) The gravity fall system. (B) The HAMOU	
		ENDOMAT is an automatically controlled	
		suction and irrigation pump. (C) The pressure	
		cuff. (D) Pressure cuff that permits the usage of	
		multiple bags of fluid.	62
Figu	re (40):	Positioning of the patient in low dorsal	
		lithotomy position.	63
Figu	re (41):	Medison X6 ultrasound machine	75
Figu	re (42):	Longitudinal ultrasound image of a uterus	
		Showing a myometrial discontinuity in the	
		lower uterine segment.	76
Figu	re (43):	Schematic diagram demonstrating classification	
O		used to assess niche shape: triangle, semicircle,	
		rectangle, circle, droplet andinclusion cysts	76
Figu	re (44):	Office hysteroscope with a 30° fore-oblique lens;	
O		Karl Storz®.	77
Figu	re (45):	The HAMOU ENDOMAT; Karl Storz	78
Figu	re (46):	Hysteroscopic view of CS niche	78
Figu	re (47):	Case hysteroscopy report	
Figu	re (48):	Consort chart of patients included in the study	
_	re (49):	Pattern of abnormal uterine bleeding	
_	re (50):	Prevalence of associated gynecological	
0		symptoms	87
Figu	re (51):	Number of previous CS in patients with or	= •
<i>6</i>	\- /-	without niche	93
Figu	re (52):	Prevalence of Post menstrual spotting in	
3 ····	\ - \ / ·	patients with or without niche.	94

Introduction

In the middle of the 20th century there was a rising of cesarean section rates worldwide. Over the last few decades cesarean section (CS) rates have continued to rise. In the UK the CS rate increased from 12 to 29% between 1990 and 2008 (Betran et al., 2007). In the USA in 2011 one in three women delivered by CS, whereas in China the CS rates have even risen from 2% in 1985 to 36–58% in 2010 and in Brazil from 15% in 1970 to even 80% in the private sector in 2004 (Barros et al., 2011; Deng et al., 2014; Feng et al., 2014; Osterman and Martin, *2014*).

There is no discussion that a CS is a lifesaving procedure for some women, for example: for women with placenta previa or truly obstructed labor or for babies with proven distress either antenatal or intrapartum. Also, women with a breech pregnancy or a twin pregnancy are likely to benefit from a CS, albeit that the large majority of them will do well without a CS (Hofmeyer et al., 2015; Roberts et al., 2015; *Vlemmix et al.*, 2015). The World Health Organization (WHO) estates the optimal CS rate at 15% (Gibbons et al., 2010). As the procedure became safer and under the excuse to reduce newborn morbidity and mortality there was an increase in number of these procedure.

The increasing CS rate has stimulated an interest in the potential long-term morbidity of CS scars (Diaz et al., 2002; Silver, 2010; Clark and Silver, 2011). In the last decades

scientists became aware of gynecological symptoms after a CS, such as abnormal uterine bleeding, dysmenorrhea, chronic pelvic pain and dyspareunia (Wang et al., 2009; De Vaate et al., 2011; van der Voet et al., 2014).

Already in 1999 it was postulated that these symptoms could be related to an incompletely healed uterine scar, also called a niche. Patients with abnormal uterine bleeding (AUB) who had undergone prior cesarean sections, specially postmenstrual spotting may be due to scar defects left in uterus by the surgery, forming a diverticulum, an anomaly called "isthmocele" or "cesarean scar syndrome" (Morris, 1995).

However, a generally accepted definition of a niche is still under debate. Alternative terms for a niche are cesarean scar defect, deficient cesarean scar, diverticulum, pouch and isthmocele. Interest in the potential clinical relevance of a niche has increased in the last few years and a growing number of studies on the subject have been published. Various methods to detect and measure a niche have been described (De Vaate et al., 2011).

This niche in the caesarean scar could be a cause of abnormal bleeding due to the collection of menstrual blood in a uterine scar defect causing post-menstrual spotting (Thurmond et al., 1999). The term 'niche' describes the presence of a hypoechoic area within the myometrium of the lower uterine segment, reflecting a discontinuation of the myometrium at the site of a previous CS (De Vaate et al., 2011; Naji et al., 2012). A wedge-shaped defect in the uterine wall following CS was first described using hysterosalpingography in 1961 (Poidevin,

1961). It is preferred to use the term 'niche', which was introduced by Monteagudo et al. in 2001 (Monteagudo et al., *2001*).

Niches were defined as indentations of the myometrium of at least 2 mm (De Vaate et al., 2011; van der Voet et al., 2014). Large niches occur less frequently, with an incidence varying from 11 to 45% dependent on the definition used (a depth of at least 50 or 80% of the anterior myometrium, or the remaining myometrial thickness ≤ 2.2 mm when evaluated by TVS and ≤ 2.5 mm when evaluated by sonohysterography) (De Vaate et al., 2011; De Vaate et al., 2014; van der Voet et al., *2014*).

Later prospective cohort studies reported abnormal uterine bleeding in about 30% of women with a niche at 6–12 months after their CS compared with 15% of women without a niche after CS. Various methods to detect and measure a niche have been described. The majority of papers have evaluated the niche with the use of transvaginal sonography (TVS), Saline contrast sonohysterography (SCSH) and Gel instillation sonohysterography (GIS) (Bij de Vaate et al., 2011), but a minority have used hysteroscopy (Fabres et al., 2003) or hysterosalpingography (Ofili-Yebovi et al., 2008).

Based on both the limited available evidence combination with observations during sonographic, hysteroscopic and laparoscopic evaluation of niches hypotheses have been postulated on niche development (Vervoort et al., 2015).

Post-menstrual spotting seems to be a predominant symptom in women with a niche (Valenzano et al., 2006; De Vaate et al., 2011). The first publications on caesarean section scar defects in relation to bleeding symptoms date from 1975 (Stewart et al., 1975). Since then many articles have reported a high prevalence of niches in women with abnormal uterine bleeding, including prolonged menstruation or post-menstrual spotting (Regnard et al., 2004: Fabres et al., 2003; Thurmond et al., 1999; De Vaate et al., 2013).

Thurmond et al. (1999) suggested that AUB occurrence may be due to a retraction of the scar tissue causing a dilation of the lumen or a pseudo cavity in the lower segment, which is limited in the upper portion by the endometrium and myometrium thickening, blocking the area in several degrees. According to these authors, the causes of such changes are unknown, but may be attributed to differences in the healing process of each side of the incision.

Fabres et al. (2003) stated that despite the scarcity of studies on this subject post-menstrual bleeding may be explained either by the mechanical obstruction caused by the thickness of the superior edge of cesarean section scar, or due to the accumulation of blood in the diverticulum.

It is important to underline that diagnostics and treatment should only be considered in case of symptomatic women in order to avoid 'too much medicine' (Movnihan and Smith, *2002*).

AIM OF THE WORK

The aim of this study is to assess the prevalence of cesarean section niche in women with unexplained abnormal uterine bleeding.

Chapter 1 CESAREAN SECTION NICHE

ver the last few decades Caesarean section (CS) rates have continued to rise (*Betran et al.*, 2007). There is no discussion that a CS is a lifesaving procedure for some women, for example for women with placenta previa or truly obstructed labour, or for babies with proven distress either antenatal or intrapartum. Also, women with a breech pregnancy or a twin pregnancy are likely to benefit from a CS, albeit that the large majority of them will do well without a CS (*Hofmeyer et al.*, 2015). The WHO estates the optimal CS rate at 15% (*Gibbons et al.*, 2010).

The increasing CS rate has stimulated an interest in the potential long-term morbidity of CS scars (*Diaz et al.*, 2002). In the last decades scientists became aware of gynecological symptoms after a CS, such as abnormal uterine bleeding, dysmenorrhea, chronic pelvic pain and dyspareunia (*Wang et al.*, 2009).

Researchers have observed the presence of a niche at the site of the cesarean scar. The term 'niche' is a sonographic finding describes the presence of anechoic area within the myometrium of the lower uterine segment, reflecting a discontinuation of the myometrium at the site of incision of a previous CS (*Monteagudo et al.*, 2001). Alternative terms for a niche are cesarean scar defect (*Wang et al.*, 2009), deficient cesarean scar (*Ofili-Yebovi et al.*, 2008), diverticulum

(Surapaneni et al., 2008), pouch (Fabres et al., 2003) and isthmocele (Borges et al., 2010).

Several studies have demonstrated that a niche may be responsible for abnormal uterine bleeding in women with a previous CS. However, most studies included women with gynecological complaints such as dysmenorrhea, chronic pelvic pain and dyspareunia (*Monteagudo et al., 2001*).

Thurmond et al., (1999) was postulated the hypothesis that a niche in the CS scar could be a cause of abnormal bleeding due to the collection of menstrual blood in a uterine scar defect causing post-menstrual spotting. Later prospective cohort studies reported spotting in 30% of women with a niche at 6–12 months after their CS compared with 15% of women without a niche after CS.

Morphological abnormalities in the CS scar can be visualized using transvaginal sonography (TVS), gel or saline instillation sonohysterography (GIS or SIS) or hysteroscopy (**Figure 1**). A wedge-shaped defect in the uterine wall following CS was first described using hysterosalpingography in 1961. Niches are defined as indentations of the myometrium of at least 2 mm (*De Vaate et al.*, 2011).