

Ain Shams University Faculty of Science Chemistry Department

Green Desulfurization of some Petroleum Organic Sulfur Compounds Using Nano Layered Materials Loaded with {Mo₁₃₂} Nanoball

Thesis Submitted for

Ph.D. Degree of Science (Chemistry)

By

Asmaa Ahmed Abdelrahman Ahmed

M.Sc. in Chemistry

(Inorganic Chemistry 2013)

To
Chemistry Department
Faculty of Science
Ain Shams University
Cairo, Egypt

Ain Shams University Faculty of Science Chemistry Department

Green Desulfurization of some Petroleum Organic Sulfur Compounds Using Nano Layered Materials Loaded with {Mo₁₃₂} Nanoball

Thesis Submitted for

Ph.D. Degree of Science (Chemistry)

By

Asmaa Ahmed Abdelrahman Ahmed

M.Sc. in Chemistry

(Inorganic Chemistry 2013)

Supervised by

Prof. Dr.Mohamed Fathy El-Shahat

Professor of Inorganic and Analytical Chemistry Faculty of science Ain Shams University

Ass.Prof. Dr.Mohamed Ahmed Betiha

Ass. Professor of Material Science Egyptian Petroleum Research institute

Prof. Dr. Hoda Sayed Ahmed

Professor of Petroleum Refining Egyptian Petroleum Research Institute

Dr. Abdelrahman Mohamed Rabie

Researcher of Petrochemical Egyptian Petroleum Research Institute

To Chemistry Department Faculty of Science, Ain Shams University

Acknowledgements

First and foremost, my gratitude goes to Allah, who gives me the strength and wisdom to do my research in an acceptable style.

Thanks are also due to Egyptian Petroleum Research Institute (EPRI), for financial support and facilities offered which enabled the author to carry out this work.

I owe a well-deserved debt of deep gratitude to Prof. Dr. Mohamed F. El-Shahat Professor of Inorganic and Analytical Chemistry, Department of Chemistry, Faculty of Science; Ain shams University, for giving me the honor of working under his supervision, and for his interest and following up the progress in the work and continuous support.

Deep thanks and gratitude are due to Prof. Dr. Hoda S. Ahmed, Prof of Petroleum Refining, Egyptian Petroleum institute for support, great patience, professional guidance and strong confidence in my doing everything best. I wish for her a great success and a good health all of her life.

I wish also to thank Dr. **Mohamed. A. Betiha,** Associate Professor in Production Division, Egyptian Petroleum Research Institute (EPRI), for his intelligent supervision, consistent motivation, extraordinary patience and exceptional freedom throughout the work on this dissertation. I owe a lot of my success to him.

My gratitude goes to Dr. Abdelrahman. M. Rabie, he continuously trained me to become a better researcher, also for his guidance, valuable proposals, constructive criticism, encouragement, and for his invaluable suggestions for improving the manuscript.

I would like to express my deepest gratitude and appreciation to my husband for his love, understanding, and patience during my study. and to my brothers and sisters for invaluable help, continual encouragement and their motivation over years.

Finally, and to all of those, I would really like to say: "There are no words to match my gratitude".

Asmaa Ahmed Ahdelrahman

Aim of the work

This study has aimed to produce ultra-low sulfur diesel fuel via oxidative desulfurization process. Two kinds of polyoxometalate - graphene oxide composites were used:

- A- {Mo₁₃₂}/GO composite.
- B- {Fe₃₀Mo₇₂}/GO composite.

The structural and chemical properties of the prepared materials were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV-vis., Raman spectroscopy, HR-TEM, TGA and SBET techniques.

So the plane of this work can be presented according to the following sequences:

- **1-** Preparation and characterization of graphene oxide (GO).
- **2-** Preparation of polyoxymolybdate nanoballs{Mo₁₃₂}.
- 3- Preparation of metal substituted polyoxymolybdate nanoball $\{Fe_{30}Mo_{72}\}$.
- **4-** Preparation of polyoxomolybdate and metal substituted polyoxymolybdate nanoballs graphene nanocomposite.
- 5- Characterization of the prepared materials and composites with conventional techniques.
- 6- Study the efficiency of the prepared material on oxidative desulfurization of petroleum organosulfur compounds.
- 7- Optimization of reaction conditions including (reaction temperature, H₂O₂ ratio (O/S) molar ratio, catalyst weight and time).
- 8- Application of the more active prepared materials on petroleum fraction (gas oil) feed stock.
- 9- Characterization of spent catalysts and reuse for several time.

Abbrev.	Description
2D	2-dimensional
3D	3-dimentional
A (in Arrhenius equation)	(Pre-exponential factor)
AC	Activated carbon
ADS	Adsorptive desulfurization
ASA	Amorphous silica-alumina
BDS	Biodesulfurization
BET	Brunauer-Emmett-Teller
BN	Boron nitride
ВТ	Benzothiophene
CNT	Carbon nano tube
DBT	Dibenzothiophene
DDS	Direct desulfurization pathway
DMDBT	Dimethyldibenzothiophene
DMF	Dimethylformamide
DTA	Differential thermal analysis
Ea	The activation energy (KJ/mol)
EDS	Extractive desulfurization

EPA	Environmental protection agency
EPODS	Extraction and photocatalytic oxidative desulfurization
g-C ₃ N ₄	Graphitic carbon nitride
GO	Graphene oxide
GPH	Graphene prepared by conventional Hummers' method
GPP	Graphene prepared by phosphoric acid
HDS	Hydrodesulfurization
HYD	Hydrogenation pathway
ICP	Inductive coupling plasma
IUPAC	International Union of Pure and Applied Chemistry
K	Rate constant of pseudo-first order
Me CN	Acetonitrile
MIPs	Molecularly imprinted polymers
MS	Mechanical stirring
MIL	Materials of Institute Lavoisier
MOF	Metal-Organic Framework
NMP	N-methylpyrrolidone
NMR	Nuclear magnetic resonance
O/S	The H ₂ O ₂ /DBT molar ratio

ODH	Oxidative-dehydrogenation
ODS	Oxidative desulfurization
OSC	Organic sulfur compounds
POMs	Polyoxometalates
ppm	Part per million
R	Universal gas constant
\mathbb{R}^2	Regression coefficient
rGO/ZrP	Reduced graphene oxide /zirconium phosphate
RT	Room temperature
S_0	The initial sulfur concentration
SEM	Scanning electron microscope
SO _x	Sulfur Oxides
St	The sulfur concentration at reaction time (t)
Т	Temperature (K)
ТВНР	Tertbutyl hydroperoxide
TEM	Transmission electron microscopy
TGA	Thermal gravimetric analysis
TMs	Transition metals
UV/VIS	Ultra-violet/visible

XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
XRF	X-ray fluorescence spectroscopy

Content	Page
Acknowledgments	
Aim of the work	
List of abbreviation and symbols	I
List of contents	V
List of tables	X
List of schemes	XI
List of figures	X
Abstract	XV
List of publications	XVII
CHAPTER ONE INTRODUCTION	
I. INTRODUCTION	1
1.1.The Need for low sulfur fuel	2
1.2 Sulfur compounds found in transportation fuels	3
1.2.1.Gasoline	3
1.2.2.Jet fuel	4
1.2.3. Diesel fuel	5
1.3. Classification of desulfurization technologies	6
1.3.1. Hydrodesulfurization (HDS) based process	8

1.3.1.1. Conventional HDS	8
1.3.1.2.Advanced HDS	14
1.3.2. Advanced non-hydrodesulfurization processes	15
1.3.2.1.Shifting the boiling point by alkylation	15
1.3.2.2.Oxidative desulfurization (ODS)	16
Types of ODS	17
I -Two liquid phase oxidation system (ODS with hydrogen peroxide)	18
II- Single Phase Liquid Oxidation Systems (Organic hydroperoxides)	18
III - Gas liquid oxidation system	19
IV- H ₂ O ₂ -organic acid system (organic peracid)	19
V - ODS using miscellaneous oxidizing agents	20
1.3.2.3.Biological desulfurization (BDS)	21
1.3.2.4.Extraction desulfurization (EDS)	23
1.3.2.5. Adsorptive desulfurization (ADS)	24
1.4. Desulfurization catalysts	26
1.4.1. Graphene oxide	26
1.4.2. Functionalization of graphene	30
1.4.3. Application of graphene oxide	31
Applications of graphene oxide in catalysis	32

1.4.4. Desulfurization catalysts based graphenic carbon materials	33
1.4.5. GO based catalyst on oxidative desulfurization	34
1.5. Oxidative desulfurization catalyst using polyoxometalate	38
1.5.1.polyoxometalate	39
1.5.2.The POM synthesis	40
1.5.3.Classification of Polyoxometalates	41
I Heteropolyanions	41
II Isopolyanions	42
III Giant nanosized polymolybdate clusters:(Molybdenum blue and molybdenum brown)	43
1.5.4.Polyoxometalates properties	45
1.5.5.Polyoxometalate applications	46
1.5.6.ODS with polyoxometalate	47
CHAPTER TWO EXPERIMENTAL	51
2.1.Materials	51
2.2. Preparation of catalysts	52
2.2.1. Preparation of graphene oxide .	52
2.2.2. preparation of $\{Mo_{132}\}$	53
2.2.3.Preparation of {Fe ₃₀ Mo ₇₂ }	54
2.2.4.Preparation of {Mo ₁₃₂ }/GO nanocomposite	54
2.2.5.Preparation of {Fe ₃₀ Mo ₇₂ }/GO nanocomposite	54