Decompression Only versus Decompression and Instrumented Fusion for Surgical Management of Symptomatic Degenerative Lumbar Spinal Stenosis

A Systematic Review

Submitted for partial fulfillment of the requirement of the Master Degree in Neurosurgery

By

Eslam Mohammed Ameen El Shahat

M.B.B.Ch; Faculty of Medicine, Alexandria University

Under Supervision of

Professor Doctor/ Ashraf Gamal El Din Al-Abyad

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Doctor/ Hazem Anter Mashaly

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Doctor/ Mohamed El Sayed Ali Nosseir

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University

2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere and deep gratitude, to my **Prof. Dr. Ashraf Gamal El-Din Al Abyad** (Professor of Neurosurgery, Faculty of Medicine, Ain Shams University) for his kind help, cooperation, and valuable suggestions. It is a great honor to work under his guidance and supervision. He is always the best to represent the professorship scientifically and morally.

And I would like to express my thanks and appreciation to **Dr. Hazem Anter Mashaly**, (Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University) for his supervision, continuous guidance, monitoring, cooperation and helpful instructions. He was keen on forward progress and to provide valuable information.

Also, I am very grateful to **Dr. Mohamed El Sayed Ali Nosseir,** (Assistant Professor of Neurosurgery, Faculty of medicine, Ain shams university) for his valuable help and keen interest in the accomplishment of this work. He kept continuous guidance and support to present the work as the best, it should be.

Eslam Mohammed Ameen El Shahat

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
List of Charts	v
Introduction	1
Aim of the Work	2
Objectives	2
Review of Literature	
Anatomy of Lumbar Spine	3
Biomechanics of Lumbar Spine	27
Pathophysiology of degenerative lumbar cana	al stenosis 33
Epidemiology	40
Clinical Picture	42
Diagnosis	47
Differential Diagnosis	49
• Neuroradiology of Lumbar Spine	51
Additional diagnostics	61
Management	63
• Conservative therapy	65
• Surgery	67
I. Decompression	69

II. Instrumented fusion	72
Systematic Review	81
Methodology	81
Results	87
Discussion	123
Conclusion	126
References	127
Arabic Summary	

List of Abbreviations

Abbr.		Full-term
LCS	:	Lumbar Canal Stenosis
LF	:	Ligamentum Flavum
ALL	:	Anterior Longitudinal Ligament
PLL	:	Posterior Longitudinal Ligament
LSTV	:	Lumbosacral Transitional Vertebra
L1-L5	:	Lumbar Vertebra 1 st - Lumbar Vertebra 5th
VB	:	Vertebral Body
AF	:	Annulus Fibrosis
NP	:	Nulclus Pulposus
SAP/IAP	:	Superior Articular Process
IAP	:	Inferior Articular Process
SSL	:	SupraSpinous Ligament
ISL	:	Interspinous Ligament
DLSS	:	Degenerative lumbar spine stenosis
CSF	:	Cerebro Spinal Fluid
DRG	:	Dorsal Root Ganglion
AP view	:	Anteroposterior view
MRI	:	Magentic Resonance Images
ILL	:	IlioLumbar Ligament
LBP	:	Low Back Pain
LIF	:	Lumbar Interbody Fusion
PLIF	:	Posterior Lumbar Interbody Fusion
MI-TLIF	:	Minimal Invasive-Transforaminal Interbody Fusion
ALIF	:	Anterior Lumbr Interbody Fusion
LLIF	:	Lateral Lumbar Interbody Fusion
OLIF/ATP	:	Oblique Lumbar Interbody Fusion/Anterior To
		Psoas

List of Tables

Table No	Title	Page No.
Table (1):	Normal ranges of movement in the vertebral column and hips	32
Table (2):	Studies description	88
Table (3):	Population description	89
Table (4):	Population number underwent each splan	
Table (5):	Follow up duration	91
Table (6):	Y.Dagistan The SF-36 scores for all subscales	100
Table (7):	Y.Dagistan ODI and VAS	101
Table (8):	P.Försth Comparison between preop postop results in different scores	
Table (9):	P.Försth Secondary outcomes	104
Table (10):	A.Hallet Outcomes data for all subjection	cts 109
Table (11):	A.Hallet SF-36 for all subjects	109
Table (12):	A.Hallet Estimated comparative cost	s (£) 113
Table (13):	C.H.Lee Chronology of clinical outcome	omes 117
Table (14):	Summary Visual Analogue Score	119
Table (15):	Summary Oswestry Disability Index	120
Table (16):	Summary 36-item short-form questic (SF-36)	
Table (17):	Summary Secondary outcomes	122

List of Figures

Figure No	. Title	Page No.
Figure (1):	Superior view of lumbar vertebra	4
Figure (2):	Lateral view of lumbar vertebra	4
Figure (3):	Lumbar vertebrae articulated latera	al view 5
Figure (4):	Drawing of 2 lumbar segments vie from an oblique angle (Scottie dog	
Figure (5):	Posterior view lumbar spine	6
Figure (6):	Lumbar vertebra bony protuberanc	es7
Figure (7):	Lumbar vertebrae columns	7
Figure (8):	Intervertebral Disc	8
Figure (9):	Lumbar vertebrae Ligamentous su	pport 10
Figure (10):	Lumbar vertebrae outline view	11
Figure (11):	Outermost layer back muscles	13
Figure (12):	Intermediate layer back muscles	13
Figure (13):	Innermost layer back muscles	14
Figure (14):	Support muscles of lumbar spine.	14
Figure (15):	Cut section through back muscles	16
Figure (16):	Arterial supply of lumbar spine	18
Figure (17):	Venous drainage of lumbar spine	19
Figure (18):	Primary and secondary curves of s	pine 29
Figure (19):	Forces forms applied in lumbar biomechanics	30

Figure (20):	Intervertebral disc under different force forms	30
Figure (21):	Posterior oblique view of a functional segment unit	32
Figure (22):	Pathoanatomical illustration of LSS	37
Figure (23):	Processes involved in neurogenic claudication development in lumbar spinal stenosis.	39
Figure (24):	MRI of lumbosacral spine	53
Figure (25):	MRI lumbosacral spine (Multisegemental LSS)	55
Figure (26):	CT myelography	56
Figure (27):	Functional X-ray radiographs	58
Figure (28):	Conventional myelography	59
Figure (29):	Proposed treatment algorithm for symptomatic LSS	68
Figure (30):	Foraminotomy	69
Figure (31):	Laminectomy	70
Figure (32):	Interlaminar fenestration	71
Figure (33):	Surgical approaches to the lumbar spine for interbody fusion techniques	72
Figure (34):	MIS paramedian Wiltse approach	75
Figure (35):	PLIF muscle splitting approach with inserted cages	75
Figure (36):	TLIF	77
	ALIF anterior abdominal wall Incision	
Figure (38):	ALIF	80
- '		

List of Charts

Chart No	. Title	Page No.
Chart (1):	Compressive strength of spine	31
Chart (2):	Male to female ratio among study population	89
Chart (3):	Mean age of the studies included in systematic review	
Chart (4):	Follow up duration period	
Chart (5):	D.Grob Walking distance Preop and Postop	
Chart (6):	D.Grob VAS score preop and postop	o 106
Chart (7):	A.Hallet Changes in SF-36 for all su	bjects 110
Chart (8):	A.Hallet VAS scores for backache (l	LBOS).110
Chart (9):	A.Hallet Changes in LBOS	111
Chart (10):	A.Hallet Changes in Roland and Mo Disability Score	
Chart (11):	A.Hallet Patient satisfaction and Eur VAS score at 5 years	_
Chart (12):	C.H.Lee VAS Back pain	114
Chart (13):	C.H.Lee VAS Leg pain	115
Chart (14):	C.H.Lee ODI	116

Introduction

I. Rationale and justification of the study

Lumbar Canal Stenosis (LCS) is a developmental or congenital narrowing of the spinal canal that produces compression of the neural elements before their exit from the neural foramen. This is usually due to the common occurrence of spinal degeneration that occurs with aging. The spinal canal demonstrates narrowing, attributed most frequently to acquired degenerative or arthritic changes such as hypertrophy of the surrounding articulations the canal, intervertebral disc herniation or bulge, hypertrophy of the ligamentum flavum, osteophytes formation and degenerative spondylolisthesis. The narrowing may be limited to a single motion segment or it may be more diffuse spanning two or more motion segments. (1)

The early symptoms of lumbar canal stenosis include bouts of low back pain. After a few months or years, this may progress to claudication. The pain may be radicular, following the classic neurologic pathways. This occurs as the spinal nerves or spinal cord become increasingly trapped in a smaller space within the canal. (2)

The classic presentation of LCS is neurogenic claudication, but other symptoms can occur as heaviness, weakness, sensation of tingling, pricking, or numbness and leg cramps, as well as bladder symptoms. Symptoms are most

commonly bilateral and symmetrical, but they may be unilateral; leg pain is usually more troubling than back pain. (2)

Non-surgical treatment, such as physiotherapy, analgesic drugs and epidural steroids injection is effective in LCS with mild or occasionally moderate pain. ⁽³⁾ Failure of conservative treatment is an indicator to consider surgical intervention. Surgical treatment is usually performed in patients with moderate-to-severe limitation and/or patients with progressive limitation of activities of daily living, and only after correlation of patients' presentation to radiological examinations. ⁽⁴⁾

II. Aim of the Work

To review and summarize available knowledge on the rule of decompression only versus decompression and instrumented fusion in the management of degenerative lumbar canal stenosis.

III. Objectives

To compare the efficacy and effectiveness of decompression alone versus decompression and instrumented fusion in the management of degenerative lumbar canal stenosis as regards improvement of symptoms as a primary outcome and complications dependent on the intervention being considered, duration of the operation, blood loss, length of hospital stay, reoperation rate and operation costs as secondary outcomes.

Anatomy of Lumbar Spine

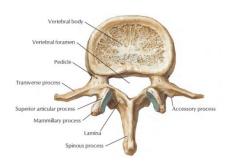
Overview

The lumbar spine consists of 5 moveable vertebrae numbered L1-L5. The complex anatomy of the lumbar spine is a remarkable combination of these strong vertebrae, multiple bony elements linked by joint capsules, and flexible ligaments/tendons, large muscles, and highly sensitive nerves. It also has a complicated innervation and vascular supply. (5)

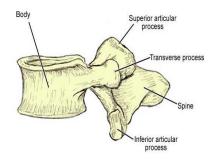
The lumbar spine is designed to be incredibly strong, protecting the highly sensitive spinal cord and spinal nerve roots. At the same time, it is highly flexible, providing for mobility in many different planes including flexion, extension, side bending, and rotation.

Gross Anatomy

Bones


The lumbar vertebrae, numbered L1-L5, have a vertical height that is less than their horizontal diameter. They are composed of the following 3 functional parts:

- The vertebral body, designed to bear weight.
- The vertebral (neural) arch, designed to protect the neural elements.
- The bony processes (spinous and transverse), which function to increase the efficiency of muscle action. (8)


The lumbar vertebral bodies are distinguished from the thoracic bodies by the absence of rib facets. The lumbar vertebral bodies (vertebrae) are the heaviest components, connected together by the intervertebral discs. The size of the vertebral body increases from L1 to L5, indicative of the increasing loads that each lower lumbar vertebra absorbs. Of note, the L5 vertebra has the heaviest body, smallest spinous process, and thickest transverse process. ⁽⁶⁾

The intervertebral discal surface of an adult vertebra contains a ring of cortical bone peripherally termed the epiphysial ring. This ring acts as a growth zone in the young while anchoring the attachment of the annular fibers in adults. A hyaline cartilage plate lies within the confines of this epiphysial ring.

Each vertebral arch is composed of 2 pedicles, 2 laminae, and 7 different bony processes (1 spinous, 4 articular, 2 transverse) (see the following image), joined together by facet joints and ligaments. (11)

Figure (1): Superior view of lumbar vertebra ⁽²⁵⁾

Figure (2):Lateral view of lumbar vertebra (25)

The pedicle, strong and directed posteriorly, joins the arch to the posterolateral body. It is anchored to the cephalad portion of the body and function as a protective cover for the cauda equina contents. The concavities in the cephalad and caudal surfaces of the pedicle are termed vertebral notches.

Beneath each lumbar vertebra, a pair of intervertebral (neural) foramina with the same number designations can be found, such that the L1 neural foramina are located just below the L1 vertebra. Each foramen is bounded superiorly and inferiorly by the pedicle, anteriorly by the intervertebral disc and vertebral body, and posteriorly by facet joints. The same numbered spinal nerve root, recurrent meningeal nerves, and radicular blood vessels pass through each foramen. Five lumbar spinal nerve roots are found on each side. (11)

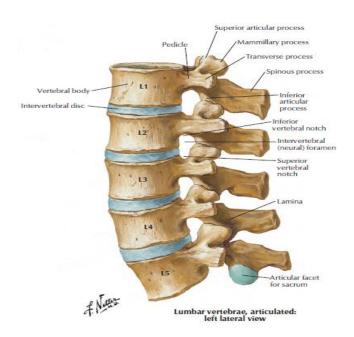


Figure (3): Lumbar vertebrae articulated lateral view (25)