Ain Shams University
Faculty of Pharmacy
Department of Pharmacology and Toxicology

Modulation of doxorubicin induced neurotoxicity by astaxanthin in experimental rat model

Thesis presented by

Sara Emad Mohamed El-Agamy

BSc. Pharmaceutical Sciences (2014)
Teaching Assisstant, Department of Pharmacology and Toxicology,
Faculty of Pharmacy, Ain Shams University

Submitted for Partial Fulfillment of MSc Degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

Under the supervision of

Dr. Samar Saad Eldeen Azab

Assistant Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Ahmed Esmat Abdel Razek

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Amal Kamal Said Abdel Aziz

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy - Ain Shams University (2017)

Acknowledgement

First of all, I am greatly thankful and grateful to "Allah", Without his highness help, this work would have never been accomplished.

I wish to express my appreciation and gratitude to **Dr. Samar**Saad Eldeen Azab, Assistant Professor of Pharmacology and

Toxicology, Department of Pharmacology and Toxicology,

Faculty of Pharmacy, Ain Shams University, for her great effort,

continuous guidance, support and indispensable help in practical

work and thesis writing.

I am greatly thankful to **Dr. Ahmed Esmat Abdel Razek**, Lecturer of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for his continuous support, guidance as well as tremendous effort and help in the practical work and thesis writing.

Truly, no words can express or repay my great thanks to **Dr.** Amal Kamal Said Abdel Aziz, Lecturer of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her continuous support, close guidance, tremendous effort, invaluable advice and indispensable help in the practical work and thesis writing. I am deeply grateful for every single moment she spent for placing me on the true track of scientific research. I would like to thank her for standing by my side throughout every step of the way, for encouraging me to strive forward, for the marvelous concepts and lessons she taught me, for the infinite amount of life talks we have shared, for sharing my ups and downs, for making herself available whenever I needed an outlet and guidance from someone wiser, for being the mentor and the dear friend I needed. I'm sure that nothing I will ever say will convey the appreciation and gratitude I owe her. Her kindness and friendship will forever be ingrained in my heart.

My heartfelt thanks to **Dr. Reham Soliman,** Lecturer of Pharmacology and Toxicology, Atomic Energy Authority, for her generous help and support.

It is my pleasure to thank **all members** of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University.

Finally, but of great importance, I wish to express my deep gratefulness to my mother for her sacrifices and patience along the way to help me, for believing in me and my ability to achieve my ambitions, my beloved father who has been a great source of motivation and inspiration and my brother for sharing my moments of joy and grief since ever.

Sara Emad El-Agamy

List of contents

Subject	Page number		
List of abbreviations	i		
List of tables	V		
List of figures	vii		
Abstract	xi		
Introduction			
1. Cancer			
Statistics	1		
Hallmarks	1		
Treatment	3		
2. Doxorubicin			
Structure	5		
Pharmacodynamics	6		
Pharmacokinetics	12		
Dosage form and dosing schedule	14		
Toxicity	15		

Subject	Page number
3. Astaxanthin	
Structure	27
Sources	27
Pharmacodynamics	28
Pharmacokinetics	40
Safety	41
Aim of the work	42
Materials and methods	
1. Experimental design	44
2. Materials	
Drugs	52
Animals	52
Chemicals and buffers	54
Antibodies	56
Ready made kits	57

Subject	Page number
3. Methods	
Behavioral tests	58
Neurodegeneration	60
Acetylcholinesterase activity	62
Oxidative stress markers	65
Inflammatory markers	72
Astrocytes activation marker	86
Apoptotic marker	88
Statistical analysis	92
Results	93
Discussion	147
Summary and conclusion	156
References	162
Arabic summary	Í

List of abbreviations

6-OHDA: 6-hydroxydopamine

AAP: 4-aminoantipyrine

Ac-DEVD-pNA: Acetyl-Asp-Glu-Val-Asp-p-nitroanilide

AChE: Acetylcholinesterase

AKI: Acute kidney injury

ALP: Alkaline phosphatase

ANOVA: Analysis of variance

Apo-A1: Apolipoprotein A1

ARE: Antioxidant response element

AST: Astaxanthin

ATCh: Acetylthiocholine

BAD: Bcl-2-associated death promoter

Bax: Bcl-2-associated X protein

BBB: Blood brain barrier

Bcl-2: B-cell lymphoma 2

Bcl-xl: B-cell lymphoma-extra large

BDNF: Brain derived neurotrophic factor

BSA: Bovine serum albumin

COX-2: Cyclooxygenase-2

CNS: Central nervous system

DAB: Diaminobenzidine

DDA: Disodium disuccinate astaxanthin

DHA-OOH: Docosahexaenoic acid hydroperoxide

DHBS: 3,5-dichloro-2-hydroxy-benzenesulfonic acid

DOX: Doxorubicin

DOXol: Doxorubicinol

DMSO: Dimethyl sulfoxide

DTNB: Dithiobisnitrobenzoic acid

FDA: Food and drug administration

FSGS: Focal segmental glomerulosclerosis

GFAP: Glial fibrillary acidic protein

GPx: Glutathione peroxidase

GSH: Reduced glutathione

GST-α1: Glutathione-S-transferase-α1

HO-1: Heme oxygenase-1

HRP: Horse radish peroxidase

HSC: Hepatic stellate cells

H&E: Hematoxylin and eosin

IAP: Inhibitor of apoptosis

ΙκΒ: Inhibitor of kappa B

Ik**KB**: Inhibitor kappa B kinase

IL: Interleukin

iNOS: Inducible nitric oxide synthase

IRP: Iron regulatory protein

JNK1: Janus kinase 1

LA: Locomotor activity

MDA: Malondialdehyde

MnSOD: Manganese superoxide dismutase

MPP⁺: 1-methyl-4-phenylpyridinium

MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mRNA: Messenger RNA

NADP: Nicotinamide adenine dinucleotide phosphate

NCI: National Cancer Institute

NF-κB: Nuclear factor kappa B

NLRP3: Nucleotide binding oligomerization domain-like

receptor protein 3

NO: Nitric oxide

Nrf-2: Nuclear erythroid 2-related factor 2

OD: Optical density

PBS: Phosphate buffer saline

PA: Passive avoidance

PCCI: Post-chemotherapy induced cognitive impairment

PGE-2: Prostaglandin E-2

PI3K/AKT: Phosphatidyl inositol 3 kinase/protein kinase B

pNA: p-Nitroaniline

ROS: Reactive oxygen species

RNS: Reactive nitrogen species

SH: Sulfhydryl group

SP Conjugate: Streptavidin-peroxidase conjugate

STAT3: Signal transducer and activator of transcription 3

TBA: Thiobarbituric acid

TBARS: Thiobarbituric acid reactive species

TCA: Trichloroacetic acid

TERT: Telomerase reverse transcriptase

TGF-β1: Transforming growth factor-beta1

Th: T-helper

TNB: Thionitrobenzoate

SGPT: Serum glutamic-pyruvic transaminase

SGOT: Serum glutamic oxaloacetic transaminase

SOD: Superoxide dismutase

TBS: Tris-buffered saline

WHO: World Health Organization

List of tables

No.	Title	Page no.
	Effect of different dosing schedules of	110.
1	doxorubicin (DOX) on behavioral changes in step-through passive avoidance (PA) paradigm	94
2	Effect of different dosing schedules of DOX on locomotor activity (LA)	97
3	Effect of different doses of AST (25, 50 and 100 mg/kg) on DOX-induced behavioral changes in step-through passive avoidance (PA) test	104
4	Effect of different doses of AST (25, 50 and 100 mg/kg) and/or DOX on locomotor activity (LA)	107
5	Effect of different doses of AST (25, 50 and 100 mg/kg) on hippocampal oxidative status in DOX-treated rats (GSH and MDA levels)	112
6	Effect of AST treatment on DOX- induced behavioral changes in step- through passive avoidance (PA) test	117
7	Effect of AST and/or DOX on locomotor activity (LA)	119
8	Effect of AST treatment on hippocampal acetylcholinesterase (AChE) activity in DOX-treated rats	126
9	Effect of AST on hippocampal oxidative status in DOX-treated rats (GSH, MDA levels and catalase activities)	129

No.	Title	Page no.
10	Effect of AST on hippocampal inflammatory status in DOX-treated rats (TNF-α, PGE-2 and COX-2 levels)	134
11	Effect of AST treatment on caspase-3 activity in DOX-treated rats	145

List of figures

No.	Title	Page no.
i	Acquired capabilities of cancer cells	3
ii	Doxorubicin (DOX) chemical structure	5
iii	The role of proteasomes in DOX-mediated DNA damage	7
iv	Doxorubicin redox cycling process	8
ν	Doxorubicin-DNA adduct	10
vi	Mechanism underlying DOX-mediated cardiotoxicity	19
vii	Chemical structure of Astaxanthin (AST)	27
viii	Astaxanthin interaction with cell membrane	30
1	Study timeline in terms of days of administration of DOX and AST	47
2	Standard calibration curve of tumor necrosis factor alpha (TNF-a)	76
3	Standard calibration curve of prostaglandin E-2 (PGE-2)	80
4	Standard calibration curve of cyclooxygenase-2 (COX-2)	85
5	Standard calibration curve of p- Nitroaniline (pNA)	91

No.	Title	Page no.
6	Effect of different dosing schedules of DOX on behavioral changes in step-through passive avoidance paradigm	95
7	Effect of different dosing schedules of DOX on locomotor activity	98
8	Effect of different dosing schedules of DOX on hippocampal neurodegenerative changes	100
9	Effect of different doses of AST (25, 50 and 100 mg/kg) on DOX-induced behavioral changes in step-through passive avoidance paradigm	105
10	Effect of different doses of AST (25, 50 and 100 mg/kg) and/or DOX-on locomotor activity	108
11	Effect of different doses of AST (25, 50 and 100 mg/kg) against DOX-induced hippocampal neurodegenerative changes	110
12	Effect of different doses of AST (25, 50 and 100 mg/kg) on hippocampal GSH concentration in DOX-treated rats	113
13	Effect of different doses of AST (25, 50 and 100 mg/kg) on hippocampal MDA concentration in DOX-treated rats	114