

Using genetic Algorithms in Time Cost Trade off Optimization Project Networks

A Thesis

Submitted to the Faculty of Engineering
Ain Shames University for the partial Fulfillment
Of the Requirements of the Degree of Master of Science in civil
Engineering

Prepared by ENG. ABDALLAH HOSNY EMAM

Civil engineer, graduate M.SC Student structural engineering department Ain shams university, Cairo, EGYPT

Supervisors

Prof. Dr. Amin Saleh Aly,

Professor, of structural engineering department Ain shams university, Cairo, Egypt

Prof. Dr. Ibrahim Abd Elrashed

Professor, of structural management engineering department Ain shams university, Cairo, EGYPT

Prof. Dr. Niveen Mohamed Badra,

Professor, of matimatical engineering department Ain shams university, Cairo, EGYPT

Using genetic Algorithms in Time Cost Trade off Optimization Project Networks

A Thesis For

M.Sc. Degree in civil Engineering (Management Engineering)

Prepared by ENG. ABDALLAH HOSNY EMAM

Civil engineer, graduate M.SC Student structural engineering department Ain shams university, Cairo, EGYPT

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Adel Abo-Alyazeid Al-Samadoni	•••••
Professor, of management engineering department	
Matariya university, Cairo, EGYPT	
Prof. Dr. Hamdy Mohamed Ahmed.	•••••
Professor, of matimatical engineering department	
Al-Shuruq university, Cairo, Egypt	
Prof. Dr. Ibrahim Abd Elrashed.	•••••
Professor, of structural management engineering department	
Ain shams university, Cairo, EGYPT	
Prof. Dr. Niveen Mohamed Badra,	•••••
Professor, of matimatical engineering department	
Ain shams university, Cairo, EGYPT	

STATEMENT

This dissertation is submitted to Ain Shams University, faculty of engineering for the degree of M.Sc. in civil Engineering.

The work included in this thesis was carried out by the author in the department of Structure Engineering, Faculty of Engineering, Ain Shams University, from November 2013 to May 2017.

NO Part of the thesis has been submitted for a degree or qualification at any other university or institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of other.

Date: -	/	/	2017
Signature: -			

Name: Eng. **Abdallah Hosny Emam.**

ABSTRACT

In this thesis, an optimal balance of time and total project cost is achieved. a new simple, robust methodology and computer program were developed. the program deals with all the construction project data (huge number of activities, construction methods or modes (genes) and relationships) to solve time—cost trade-off (TCT) problem this leads to huge amount of permutation solutions, through there permutation produce infinite series of individuals have been produced, which have different costs and times.

The genetic algorithm technique is employed to produce the optimum solution to this problem. This is achieved through initialization of parent generation using matrices obtained from VBA Program. the data is suitable for the Genetic Julia algorithm performance and are considered to be the initial population for the evaluation process. new developed Julia script is used to determine the fitness of each solution. Selection, crossover, mutation, replacement is applied to get a new offspring generation. Finally, a special elitism technique is used for multi objective to get time-cost trade off curve and the choices of strategies, which give the ideal Balance of time and cost.

ACKNOWLEDGMENTS

Frist and foremost, praise and thanks for God.

I would like to express my deepest gratitude and appreciation to my supervisors **Prof. Dr. Ibrahim Abd Elrashed**, Professor, of construction management Ain Shams University, Cairo, Egypt, **Prof. Dr. Amin Saleh Aly**, Professor, of structural engineering Ain shams university, Cairo, Egypt **and**, **Prof. Dr. Niveen Mohamed Badra**, Professor, of mathematical engineering Ain shams university, Cairo, EGYPT, for their kind supervision, support, guidance, help, encouragement and useful suggestions since the start of this work.

I am indebted to **Dr. Ehab Zaky El feky**, doctor, at Faculty of Computers and Information, Cairo University, for his, support, advice and constructive troughs throughout this work.

Finally, I make all the meanings of love, gratitude and appreciation to my family (my mother, my brothers, my sisters) for their love and encouragement.

(Table of contents)

pag	,e
ABSTRACT ii ACKNOWLEDGEMENTS	
TABLE OF CONCOTENTS	
LIST OF FIGERS	
LIST OF TABLES xi	ii
Chapter1:(Introduction)	-
1.1 Research Significant:	-
1.2 Problem Description:	-
1.3. Time-Cost Trade-Off:	-
1.3.1 Activity Time-Cost Relationship: 5	-
1.3.2. Project Time-Cost Relationship:	-
1.4 Thesis organization:	-
Chapter 2:(Literature Review)	-
2.1. Mathematical Programming Models:	-
2.2. Heuristic models:	-
2.3. Time -Cost Genetic Algorithm:	-
Chapter 3: :(Evolutionary process)	-
3.1 Evolutionary Computation:	-
3.2 Generic Evolutionary Algorithm:	-
3.3 encoding – The Chromosome:	-
3.3.1 Binary encoding:	-
3.3.2 Real encoding:	-
3.3.3 Maximum number of option for each activity vector:	-
3.4 Initialization (initial population):	-
Chapter 4: (Time and Cost Algorithm)	-
4.1. Evaluation the objective:	-
4.2. Creating the basic matrices by using (VBA) program:	-

4.2.1.A-Global Relation matrix:	٣٢ -
4.2.2. Creation of Global Relation matrix:	٣٣ -
4.2.3. Creating cost matrix and duration matrix:	٤٤ -
4.2.3.1 Procedure to create genes matrices automatically:	
4.3. Simplified Julia Algorithm:	
4.3.1 First step: Characterization classes:	_ OA _
4.3.2. Forward path of Critical path technique algorithm in Julia language	_ 09 _
4.3.2.1. preparing the activities of the project:	٦٠ -
4.3.2.2 Allocation predecessor activities	77 -
4.3.2.3 Import genes and allocation construction methods	٦٤ -
4.3.2.4. Relationship between activities in Julia program:	Y• -
4.4. Evaluate population (results and plotting):	Υ٤_
Chapter 5:(Time and Cost Algorthim)	76 -
5.1 Fitness Function in genetic algorithm:	76 -
5.2. Fitness for Multi-objective optimization problems (MOP):	77 -
5.2. (1) Pareto Front-Non-Dominated Set (efficiency set):	77 -
5.2 (2) Convex hull boundary:	79 -
5.3 determine minimum Perpendicular Distance	85 -
5.4. fitness for each individual:	89 -
5.5 Median of a triangle:	104 -
5.6. determine the fitness by using the area under each chromosome:	110 -
Chapter 6: :(Reproduction and Selection)	111 -
6.1 Selection:	111 -
6.2 Tournament Selection	117 -
6.3 Proportional Selection	117 -
6.4 Roulette Wheel Selection in a programming environment:	١١٤ -
6.5 Parallel Computing in selection using Julia:	۱۱۸ -
6.6. Combining Genetic Material(crossover):	177 -
6.7 Types of Crossover:	۱۲۷ -

6.8 Uniform combining genetic material:	179 -
6.9 mutation:	۱۳۱ -
Chapter 7:(Multi objective EA)	188 -
7.1. Multi criteria for optimality:	۱۳۳ -
7.2. Multi objective Optimization in Time-Cost trade off problem (TCT):	177 -
7.3. Classical methods:	١٣٤ -
7.4. Motivation for Evolutionary Multi objective Optimization:	180 -
7.5. Elitism MOGA:	180 -
7.6. Elitism in time-cost genetic algorithm:	۱۳۷ -
7.7 Algorithm 1- non-dominated archive:	۱۳۷ -
7.8. Algorithm 2: non-dominated archive with elitism Pareto- restricted mating:	187 -
7.9. Algorithm 3: elitism non-dominated archive (total and percentage) with &without restricted mating:	
Chapter 8: (summary and conclusion)	١٦٨
Summary:	١٦٨
Conclusions:	169
References:	1٧0

LIST OF FIGERS

Chapter (1)

Figure (1-1): Single -multi objective time-cost
Figure (1-2): True (1), and Assumed (2,3,4) Time Cost Relations ٤ -
Figure (1-3): Representation of non-linear Relation (2007) ° -
Figure (1-4): Linear Relation - 7 -
Figure (1-5): Interfere among Distributions
Figure (1-6): Correlation between Duration and Cost
Figure (1-7): Project Time- direct Cost
Figure (1-8): The indirect cost of project
Figure (1-9): The Total cost curve
Chapter (2)
Figure (2-1): Genetic algorithms procedure [Hegazy 1999] 10 -
Figure (2-2): Flowchart of simulation GA [(2000): Chung et al]
Figure (2- 3):Concept of adptive weight approach adapted from [Gen and cheng2000] - ۱۹ -
Chapter (3)
Figure (3-1): Chromosomes of the organism
Figure (3-2): Hamming Distance for Binary and Gray Coding ۲۳ -
Figure (3-3): Binary and Gray Coding
Figure (3-4): Chromosome Structure of String
Figure (3-5): Chromosome Structure (Julia result)
Figure (3-6): Activity modes
Figure (3-7): Initial population chromosomes
Chapter (4)
Figure (4- 1) Global Relation matrix (Excel-Julia)
Figure (4- 2) WB "" -
Figure (4-3) before Result
Figure (4-4) After Result
Figure (4- 5) matrix columns
Figure (4- 6) matrix Rows
Figure (4-7) delay constrain ٣٩ -
Figure (4- 8) final form of matrix ٤٠-
Figure (4- 9) exported matrix ٤٢ -
Figure (4-10) cost – time Julia matrices

Figure (6-1) Roulette Wheel Selection
Figure (6-2) central angle
Figure (6- 3) cumulative probability array
Figure (6-4) the functions of Parallel processing
Figure (6-5) two candidate parents.
Figure (6- 6) one-point crossover
Figure (6-7) multi-point crossover
Figure (6-8) Two-parents-two offspring.
Figure (6-9) Two-parents-one offspring
Figure (6- 10) two candidate schedules
Figure (6- 11) mutation process
Chapter (7)
Figure (7- 1) Algorithm 1- non-dominated archive
Figure (7- 2) tournament selection with Algorithm 1 results
Figure (7-3) Roulette Wheel Selection with Algorithm 1 results
Figure (7-4) Algorithm 2: non-dominated archive with elitism Pareto- restricted mating. 157-
Figure (7-5) Algorithm2: Roulette Wheel Selection with results
Figure (7-6) Algorithm 2: Tournament Selection depended on Fitness results 150 -
Figure (7-7) Tournament selection with compare fitness for non-dominated solutions results- 157
Figure (7-8) Roulette Wheel Selection without restricted results
Figure (7-9) Tournament selection based on fitness results without restricted mating 101 -
Figure (7- 10) Pareto front (time-cost trade off curve)
Figure (7- 11) Algorithm (3) Processes
Figure (7-17) Algorthim3: Roulette wheel selection Case1 with restricted mating 107 -
Figure (7 -13) Tournament selection based on fitness Case1 with restricted matin 10V -
Figure (7 -14) Tournament selection with compare fitness for non-dominated solutions case1 with
restricted mating
Figure (7 -15) Algorthim3: Roulette wheel selection Case1 without restricted mating ۱٥٩ -
Figure (7 -16) Tournament selection based on fitness Case1 without restricted matin ۱۲۰ -
Figure (7 -17) Tournament selection with compare fitness without restricted mating ۱۲۱ -
Figure (7 -18) Roulette wheel selection Case2with restricted mating
Figure (7 -19) Tournament selection based on fitness Case2 with restricted mating 177 -
Figure (7 -20) Algorthim3 Tournament selection with compare fitness:
Figure (7 -21) Algorthim3 Roulette wheel selection Case2 without restricted mating ۱٦٥ -
Figure (7 -22) Tournament selection based on fitness Case2 without restricted mating ۱٦٦ -
Figure (7 -23) Tournament selection with compare fitness case2

LIST OF Table

Table (4-1)	Global Relation matrix data	32-
Table (4-2)	Martial Categories	46-
Table (4-3)	Labor Categories.	46-
Table (4-4)	Equipment Categories.	46-
Table (4-5)	Subcontractor Categories.	47-
Table (4-6)	Bands Categories.	47-
Table (4-7)	Cost of construction methods (genes)	50-
Table (4-8)	Example	50-
Table (4-9)	Unit cost of material.	52-
Table (4-10) Example	56-
Table (4-11) Assign bands	54-
Table (4-12)	genes of Activities	56-
Table (4-13)) Final exported matrix	57-
Table (6-1)	cumulative probability of fitness	116-

Chapter 1

Introduction

Chapter1 Introduction

1.1 Research Significant:

This research introduces a new, simple, robust methodology and computer program, which deals with all the construction project data (huge number of activities, construction methods or modes (genes) and relationships) to answer time-cost trade-off (TCT) problem. This leads to great amount of permutation solutions, and through there permutation produce infinite series of individuals that have different costs and different times (initial solutions). The algorithm of genetic is utilized to achieve the optimal solution.

Visual Basic program (VBA), is used to produce the basic matrices required:(duration matrix, cost matrix, global relation matrix, and greater number of options vector). Data entry in this step is split into two functional areas: (1) costs of the resources (labor, material, equipment) that the company can provide for the current project and their productivity. (2) this precedence relationship of the network. Once the user inserts the band for every activity the (VBA) program gets the genes automatically. So, it would be simple to create basic matrices which is the fundamental data exported to **the Julia program**.

Using Julia program and the imported data from the (VBA), the program calculates values of every objective for each individual (cost and time), convert the decision space to objective space and produce infinite number of solutions which serve as the foundation for genetic algorithm performance. Through this large amount of solutions, the vacuum sample are reduced vacuum sample using the genetic technique (initial population, fitness, selection, and crossover, mutation) to get the best individuals that achieve the optimal pareto solutions (time-cost trade off curve) then use the indirect cost to get the optimal solution.

The technique developed identifies the best selections of crew size or equipment (genes) that achieve the optimal balance of two conflict objectives (time-cost) and produce the optimal string (schedule or chromosome) which has minimum possible cost and time to fulfill the project and respect the contractual time limit. This serves contractors to receive early completion bones and avoid the liquidated damage. It serves owners to obtain their desires to fulfill the project. It also serves the engineer to be sufficient aware of rates of performance required for every activity making better his controls the site. The study introduces complicated ideas in a simplified shape that should be

Chapter1 Introduction

beneficial to both the interested people and researchers included in solving optimization problems.