

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Performance Enhancement of Active Distribution Networks

M.Sc. Thesis
By

Mohamed Mohamed Ibrahim Ibrahim

Submitted in partial fulfillment of the requirements of the degree of M.Sc. in

Electrical Engineering

Supervised by:

Prof Dr. Metwally EL-Sharkawy
Dr. Walid Atef Omran

SUPERVISORS COMMITTEE

Name: Mohamed Mohamed Ibrahim Ibrahim

Thesis title: Performance Enhancement of Active Distribution Networks

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Metwally EL-Sharkawy

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Dr. Walid Atef Omran

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of Master of Science degree in Electrical Engineering.

The work in this thesis has been carried out by the author at the Department of Electrical Power and Machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Mohamed Mohamed Ibrahim Ibrahim			
Signature:			
	Date:	/	/ 2018

Researcher Data

Name : Mohamed Mohamed Ibrahim

Place of birth : Cairo - Egypt

Last academic degree : Bachelor of Electrical Engineering

Field of specialization : Electrical Power and Machines

University issued the

degree

: Ain Shams university

Date of issued degree : 19/07/2012(June 2012)

Job : Teacher Assistant – Electrical Power and

Machines Department-Faculty of Engineering-Ain shams university

ABSTRACT

The demand for clean energy is growing day by day which has led to the increase in the penetration of renewable energy resources in distribution networks. There are serval types of renewable energy resources such as photovoltaic systems and wind turbines. Despite their benefits, integrating renewable energy resources into conventional distribution networks might cause some operational problems. These problems include harmonic distortion, protection coordination issues, and voltage regulation problems.

This thesis focuses on the voltage regulation of distribution networks in the presence of renewable energy resources. The thesis presents a distributed control strategy based on expert system rule using multi-agent system to coordinate between the available resources to enhance the voltage profile of the system. The strategy attempts to maximize the use of renewable based distributed generators while minimizing the operation of the on-load tap changer. The proposed strategy mitigates undervoltage violation in Feeders by utilizing the available reactive power from distributed generators at each Feeder as a first step. If this action is not enough, then the strategy aims to operate the on-load tap changer to solve the problem. In case of overvoltages, the strategy attempts to curtail the active power for some distributed generators if the reactive power is not sufficient to solve the problem. In this case, the remaining capacity of the distributed generators which participated in the power curtailment can be used to inject more reactive power. As a final stage, the on-load tap changer can be used to mitigate the overvoltage problem.

The proposed strategy is applied on networks with single Feeders and networks with multiple Feeders. Several case studies are simulated to show the effectiveness and robustness of the proposed strategy. The results show the ability of the coordination strategy to keep the voltage within acceptable limits under different operating conditions. Moreover, the stress on the taps of the on-load tap changer is relieved by avoiding unnecessary tap moves. Furthermore, the strategy avoids unnecessary active power curtailment through absorption of the available reactive power in distributed generators before curtailing any active power from distributed generators.

Keywords: Decentralized Control, Distributed Generator (DG), Multi-Agent System (MAS), On-Load Tap Changer (OLTC).

ACKNOWLEDGEMENT

I thank God, for wisdom and knowledge that He has blessed me. You made me strong. You gave me reasons to go and make the best out of me.

I would like to thank my supervisors: Prof. Dr. Metwally EL-Sharkawy and Dr. Walid Omran for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and have made major influence in my academic life. I could not possibly list all that I have learned from them.

I am grateful for my parents, my wife and my brother, who helped me through all thesis. Thank you for supporting me in every way.

Mohamed Mohamed Ibrahim Cairo, 2018

TABLE OF CONTENTS

Abstract	V
Acknowledgement	VI
Table of Content	VII
List of Figures	IX
List of Tables	XI
List of Abbreviations	XIII
List of Symbols	XIV
Chapter 1 Introduction	1
1.1 General	1
1.2 Passive and active distribution networks	1
1.3 Motivation	2
1.4 Research objective	3
1.5 Thesis organization	3
Chapter 2 Voltage Control in Distribution Networks	4
2.1 General	4
2.2 Conventional voltage control devices	4
2.2.1 Voltage control using OLTC	4
2.2.3 Voltage control using SVR	5
2.2.2 Voltage control using switched shunt capacitors	6
2.3 Impact of DGs on the operation of OLTC	7
2.4 Voltage control Strategies in active distribution networks	7
2.4.1 Centralized coordination strategy	7
2.4.2 Distributed coordination strategy	8
2.5 Summary	10
Chapter 3 Multi Agent System Approach For Voltage Control In Dis	
<u>System</u>	
3.1 General	
3.2 MAS Definition	
3.3 Agents Frameworks	
3.4 Proposed MAS architecture	
3.5 Intelligent agents structure	
3.5.1 DG agent structure	
3.5.2 OLTC agent structure	
3.6 Summary	19

Chapter 4 Voltage Control in Single Feeder Distribution System Using	20
MAS.	
4.1 General	
4.2 Proposed Voltage control strategy	20
4.3 Methods for calculating the voltage sensitivity coefficients	28
4.4 Test system and case studies	29
4.4.1 Case 1	30
4.4.2 Case 2	33
4.4.3 Case 3	34
4.4.4 Case 4	37
4.5 Summary	.41
Chapter 5 Voltage Control in Multiple Feeder Distribution System Using	
<u>MAS</u>	42
5.1 General	42
5.2 Proposed Voltage Control Strategy.	42
5.3 Test System and Case Studies.	.47
5.3.1 Case 1	47
5.3.2 Case 2	
5.3.3 Case 3	
5.4 Summary	
Chapter 6 Conclusion and Recommendation for Future Works	
· ·	
6.1 Conclusion.	
6.2 Future work suggestions	
References	68
List of Publications	73
Appendix A	74
Appendix B	.76
Annendix C	79

LIST OF FIGURES

Figure 1-1 Passive distribution system [1]	1
Figure 1-2 Active distribution system[4]	2
Figure 2-1 On-load tap changer [8]	4
Figure 2-2 LDC circuit of OLTC [9]	5
Figure 2-3 SVR at the middle of a distribution feeder	5
Figure 2-4 Overhead line capacitors [9]	6
Figure 2-5 A conception of centralized control strategy for voltage regulation [13]	8
Figure 2-6 Distributed control in distribution system using MAS system [32]	9
Figure 3-1 Proposed MAS architecture	13
Figure 3-2 BDI intelligent agent construction [19]	15
Figure 3-3 DG agent structure	17
Figure 3-4 OLTC agent structure	18
Figure 4-1 Pseudo code for calculating reactive power required form each DG Figure 4-2 Pseudo code for calculating required active power curtailment and the	24
required reactive power absorption of the DGs	25
Figure 4-3 Pseudo code for calculating required OLTC tap position	26
Figure 4-4 Voltage control strategy flow chart for a single feeder	27
Figure 4-5 Distribution feeder under study	29
Figure 4-6 Voltage profile before and after voltage coordination for Case 1	31
Figure 4-7. Exchange of messages between agents for test Case 1	32
Figure 4-8 Voltage profile before and after voltage regulation for test case 2	33
Figure 4-9 Exchange of messages between agents for test case 2	34
Figure 4-10 Voltage profile before and after voltage regulation for test Case 3	35
Figure 4-11 Exchange of messages between agents for test case 3	36
Figure 4-12 Voltage profile before and after voltage regulation for test Case 4	38
Figure 4-13 Exchange of messages between agents for test Case 4	39
Figure 5-1 pseudo code for calculating required OLTC tap position for multiple	
distribution feeders	
Figure 5-2 Proposed voltage control strategy for voltage mitigation in multiple feed	
flow chart	
Figure 5-3 Multiple Feeder test system	45