

The Value of Left Atrial Deformation Analysis as a Predictor of Severity of Coronary Artery Disease

Thesis

Submitted in Partial Fulfillment for Master Degree in Cardiology

By Mustafa Fayed Fadle Abd AllahM.B.B.Ch

Under Supervision of Dr/ Ahmed Ibrahim Nassar

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr/ Khaled Mohamed Said

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr/ Ahmed Ahmed Fouad

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor** / **Ahmed Ibrahim Massar**, Professor of Cardiology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work. Thanks not just for his scientific supervision but also for his human support.

I am also delighted to express my deepest gratitude and thanks to **Dr** / **Khaled Mohamed Said,**Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr/ Ahmed Ahmed Found,** Lecturer of Cardiology Faculty of Medicine - Ain
Shams University, for his great help, active participation and guidance.

Mustafa Fayed

A special thank you to my friends and my family for their support.

Finally, I would like to thank all my professors and colleagues in the cardiology department, Nasr Insurance Hospital.

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	10
Introduction	1
Aim of the Work	15
Review of Literatrue	
 Evaluation of Left Atrium 	n by 2D Echocardiography 16
 Coronary Scoring System 	ıs40
 Coronary Artery Disease 	and LA function59
Patients and Methods	67
Results	80
Discussion	97
Summary	102
Conclusion	103
Limitations and Recommendati	on104
References	105
Master Sheet	Error! Bookmark not defined.
Arabic Summary	—

List of Tables

Table No.	Title Page N	lo.
Table (1):	Volumetric Indexes of LA Function.	26
Table (2):	Additive EuroSCORE	
Table (3):	CathPCI Risk Score System. Reproduced,	12
14616 (6).	with permission	44
Table (4):	Myocardial jeopardy scores.	
Table (5):	Characteristics of American College of	
14616 (6).	Cardiology/ American Heart Association	
	(ACC/AHA) type A, B and C lesions	48
Table (6):	Demographic data distribution of the study	
14616 (6).	group.	80
Table (7):	Co-morbidities distribution of the study	
14616 (1)1	group.	80
Table (8):	Comparison between syntax score according	00
14616 (6).	to demographic data and co-morbidities	81
Table (9):	Angiographic Features.	
Table (10):	Echocardiographic features.	
Table (11):	Correlation between syntax score according	0 1
14610 (11)	to all parameters, using Pearson Correlation	
	Coefficient in the study group.	88
Table (12):	Comparison between numbers of vessels and	
14516 (12)	Echocardiographic parameters.	91
Table (13):	Comparison between distribution pattern of	0 1
14510 (15)1	coronary artery disease and	
	echocardiographic parameters	93
Table (14):		00
14010 (11)	narameters.	95

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Sagittal section through the left The three phases of left atrium function in relation to	m (LA) the
Figure (3):	electrocardiogram (ECG). Frank–Starling law applied to tatrium.	the left
Figure (4): Figure (5):	LA remodeling Three different atrial volumes	23 during
Figure (6):	cardiac cycle	
Figure (7): Figure (8):	Global longitudinal strain of the left a Regions of interest (kernels) represe	atrium31
Figure (9):	the end-diastole (ED) and end-systo Displacement of acoustic market	le (ES)34 rs from
Figure (10):	Measurement of peak atrial long strain using speckle t	itudinal racking
Figure (11):	chamber view	37 e using from an
Figure (12):	apical 4-chamber view Modified Duke Jeopardy score	47
Figure (13): Figure (14):	The SYNTAX score algorithm Parasternal long axis M-mode thro	ugh the
Figure (15):	aortic root at the leaflet tips level Parasternal long axis M-mode imme below the level of the mitral valve	ediately
Figure (16):	tips Transmitral inflow by pulsed Doppler. Measurements of E-wave v	wave
	A-wave velocity	- ·

List of Figures Cont...

Fig. No.	Title Page N	10.
Figure (17):	Pulsed wave Doppler tissue imaging of the	
	lateral annulus	71
Figure (18):	Measurement of left atrial longitudinal	
	strain by speckle tracking	73
Figure (19):	Measurement of peak atrial longitudinal	
	strain using speckle tracking	
	echocardiography from an apical 4-	
	chamber view	
Figure (20):	The SYNTAX score algorithm.	78
Figure (21):	Pie chart syntax group distribution of the	
	study group.	82
Figure (22):	Scatter plot showing a negative correlation	
	between syntax score and PALS	85
Figure (23):	Scatter plot showing a Scatter plot showing	
	a negative correlation between syntax	
	score and PACS.	85
Figure (24):	Scatter plot showing a Negative correlation	
	between syntax score and LAs SR	87
Figure (25):	Scatter plot showing a negative correlation	
	between syntax score and LAe SR	87
Figure (26):	Scatter plot showing a negative correlation	
	between syntax score and LAa SR.	87
Figure (27):	Scatter plot showing a positive correlation	
	between syntax score and LA volume	87
Figure (28):	Scatter plot showing a Scatter plot showing	
	a positive correlation between syntax score	
	and AP LA diameter.	87
Figure (29):	Bar chart between level of syntax score	
	according to echo-cardiographic data	89
Figure (30):	Bar chart between level of syntax score	
	and strain rate parameters	90

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (31):	Bar chart between distribute coronary artery dis	-
	echocardiographic parameter	s94
Figure (32):	Receiver operating charact curves showing the accu- deformation parameters in J	racy of LA
	severity of CAD.	96

List of Abbreviations

Full term Abb. 2D..... Two-dimensionalACC...... American College of Cardiology ACEF The Value of Age, Creatinine, and Ejection **Fraction** ACS...... Acute coronary syndrome AF Atrial fibrillation AHA American Heart Association AP Anteroposterior view *BCIS-1.....The* balloonpump-assisted coronary intervention study CABG...... Coronary artery bypass grafting CAD Coronary artery disease CHF Chronic heart failure CIN Contrast induced nephropathy CRP...... C-reactive protein DES...... Drug-eluting stent. EDS..... Early diastolic strain EDS..... Early diastolic strain EF Ejection fraction ESC..... European Society of Cardiology EuroSCORE...... European system for cardiac operative risk evaluation FPG...... Fasting blood glucose GFR......Glomerular filtration rate GRC The Global Risk Classification HF..... Heart failure hs-TnT High sensitivity troponins HTN...... Hypertension

List of Abbreviations Cont...

Abb.	Full term
<i>IHD</i>	Ischaemic heart disease
<i>LA</i>	Left atrium
LAa SR	Peak atrial longitudinal strain rate during ventricular late diastole
<i>LAD</i>	Left anterior descending
LAe SR	Peak atrial longitudinal strain rate during ventricular early diastole
<i>LAO</i>	Left anterior oblique
LAs SR	$Peak \ atrial \ longitudinal \ strain \ rate \ during \\ ventricular \ systole$
LAVmax	LA maximum volume
LAVmin	LA minimum volume
LAVpreA	$Pre\ A\ volume$
<i>LCX</i>	Left circumflex
<i>LDS</i>	Late diastolic strain
<i>LM</i>	Left main coronary artery
LV	Left ventricle
LVDd	$Left\ ventricular\ end\ diastolic\ dimension$
LVDs	Left ventricular end-systolic dimension
LVEF	Left ventricular ejection fraction
LVH	Left ventricular hypertrophy
<i>MACE</i>	Major adverse cardiac events
<i>MI</i>	Myocardial infarction
MR	Magnetic resonance
NCDR	National Cardiovascular Data Registry
NSTE-ACS	Non ST elevation acute coronary syndrome
<i>NYHA</i>	New York Heart Association;
<i>OM</i>	Obtuse marginal branch
PACS	Peak Atrial Contraction strain

List of Abbreviations Cont...

Abb.	Full term	
PALS	Peak atrial longitudinal strain	
PCI	Percutaneous coronary intervention	
<i>PDA</i>	Posterior descending artery	
<i>RAO</i>	Right anterior oblique	
RCA		
ROI	Region of interest	
<i>RV</i>	Right ventricle	
SR	Strain rate	
SS	Systolic strain	
SS	Systolic strain	
STE	Speckle Tracking Echocardiography	
	ST-elevation myocardial infarction.	
	ue Doppler imaging	

Introduction

Coronary artery disease (CAD) is the leading cause of death all over the world. The World Health Organization estimates that approximately 17 million people die from CAD every year. (1)

LV diastolic function is abnormal in a high percentage of patients with CAD at rest independent of LV systolic function and may occur even in the absence of regional or global left ventricular systolic dysfunction. (2-3) It has been suggested that left ventricular diastolic dysfunction may occur before left ventricular systolic dysfunction and therefore serve as an early and sensitive marker of ischemia. (4)

The principal role of the left atrium is to modulate left ventricular (LV) filling and cardiovascular performance by functioning as a **reservoir** for pulmonary venous return during ventricular systole, **a conduit** for pulmonary venous return during early ventricular diastole, and **a booster pump** that augments ventricular filling during late ventricular diastole. (5)

Two-dimensional (2D) speckle-tracking strain imaging is a novel method for quantitative real-time assessment of regional myocardial deformation that uses tracking of acoustic speckles or kernels rather than Doppler myocardial velocities (6). It has been suggested that Left atrium strain as measured by 2D speckle tracking can be used to evaluate dynamic LA function.⁽⁷⁾

Coronary angiography is the gold standard for diagnosis of coronary artery disease. (8) The Synergy between PCI with TAXUS and Cardiac Surgery score (SYNTAX score) is anatomically based risk calculation that characterize the severity of CAD. (9-11)

AIM OF THE WORK

The aim of this study is to evaluate the relation between LA strain and the severity of coronary artery stenosis in patients with CAD.