

ASSESSING WATER RESOURCES NEEDS AND AVAILABILITY FOR THE PROPOSED DEVELOPMENT CORRIDOR

By

Sally Ahmed EL-Awady

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

IRRIGATION AND HYDRAULICS ENGINEERING

ASSESSING WATER RESOURCES NEEDS AND AVAILABILITY FOR THE PROPOSED DEVELOPMENT CORRIDOR

By Sally Ahmed EL-Awady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

IRRIGATION AND HYDRAULICS ENGINEERING

Under the Supervision of

Dr. Mohamed Morsi Atrees	Dr. Ahmed Emam Hassan
Professor of Irrigation and Drainage	Professor of Hydrogeology
Irrigation and Hydraulics Department	Irrigation and Hydraulics Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Dr. Hesham B	sekhit Mohamed
Professor of V	Water Resources
Irrigation and Hy	draulics Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Faculty of Engineering, Cairo University

ASSESSING WATER RESOURCES NEEDS AND AVAILABILITY FOR THE PROPOSED DEVELOPMENT CORRIDOR

By Sally Ahmed EL-Awady

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

IRRIGATION AND HYDRAULICS ENGINEERING

Approved by the Examining Committee

Dr. Mohamed Morsi Atrees

(Theses Main Advisor)

Professor of Irrigation and Drainage Engineering, Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

Dr. Ahmed Emam Hassan

(Theses Advisor)

Professor of Hydrogeology, Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

Dr. Ashraf Hasan Moheeb Ghanen

(Internal examiner)

Professor of Hydraulics, Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

Dr. Mohamed Mohamed Nour EL-Dein

(External examiner)

Professor of Irrigation, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Sally Ahmed EL-Awady

Name:

Date of Birth: 6./11/1975 **Nationality:** Egyptian

E-mail: s.awady0104@yahoo.com

Phone: 01224949067

Address: 2185Zahra'a Nasr City - Cairo

Registration 1/10/2011

Date:

Awarding/2018

Date:

Degree: Master of Science

Department: Irrigation and Hydraulics Engineering

Prof. Dr. Mohamed Morsi Atrees

Prof. Dr. Ahmed Emam Hassan Ahmed

Dr. Hesham Bekhiet Mohamed

Examiners: Porf Dr. Mohamed Morsi Atrees (Theses Main advisor)

Prof. Dr. Ahmed Emam Hassan Ahmed (Theses Advisor)
Prof. Dr. Ashraf Hasan Moheeb Ghanen (Internal Examiner)

Prof. Dr. Mohamed Mohamed Nour EL-Dein (External Examiner),

Faculty of Engineering, Ain Shams University

Title of Thesis:

ASSESSING WATER RESOURCES NEEDS AND AVAILABILITY FOR THE PROPOSED DEVELOPMENT CORRIDOR

Key Words:

Development Corridor; Farouk El Baz ; Water resources ; Egypt's national strategy ; New urban expansion

Summary:

Development Corridor has a vision for developing west desert of Egypt but also many debates were raised against this project. One of the main components that could terminate the project is the availability of water resources.

This research will be an assessment for water resources need and availability for the Development corridor project to introduce more feasible project that reinforce the strategy of horizontal expansion necessary to face population growth.

Acknowledgments

Thanks for those whom supported me to reach this moment. Thanks to my father who taught me the values of hard working, to my Mather who gave me the great values of living and dealing with life. Many thanks to my dear husband who pushed me all the way here, and finally thank to my best friend Omar and Sara for supporting me and carrying such a heavy burden to help me.

Table of content

CHA	APTER1: INTRODUCTION	1
1.1	General	1
1.2	Statement of the Problem	1
1.3	Research Objectives	2
1.4	Methodology	2
1.5	Thesis Outline	3
	CHAPTER2: LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Development Corridor Proposal	5
2.1.1.	NORTH-SOUTH HIGHWAY	7
2.1.2.	EAST-WEST CONNECTORS	7
2.1.3.	The Railway Component	13
2.1.4.	Water Pipeline	13
2.1.5.	Electricity Line	13
2.3	Project Benefits	13
2.4	Supports and Oppositions	13
2.1.6.	Supports	13
2.1.7.	Oppositions	14
	CHAPTER 3: METHODOLOGY	15
3.1	Overall Methodology	15
3.2	Data Collection	16
3.3	Future Population 2050	17
3.4	Water Needs for Each Connector	17
3.4.1	Municipal Water Needs	17
3.4.2	Agriculture Water Needs	18
3.4.3	Industrial Water Needs	18
3.4.4	Tourism Water Needs	18
3.5	Assessing the Available Water Resources for Each Connector	18

3.6	Cost Estimate and Economic Evaluation	
3.7	Connector Ranking	
	CHAPTER 4: EVALUATION OF WATER AVAILABILITY AND DEMANDS . 21	
4.1	Population	
4.2	Lateral Corridors	
4.2.1	Alexandria Corridor	
4.2.2	Tanta Corridor	
4.2.3	Cairo Corridor	
4.2.4	Fayoum Corridor	
4.2.5	Bahareya Corridor	
4.2.5.	1 Agriculture water needs	
4.2.6	Minya Corridor	
4.2.7	Asyout Corridor	
4.2.8	Quena Corridor	
4.2.9	Luxor corridor	
4.2.10	OKom Ombo – Aswan Corridor	
4.3	Evaluation of Water Needs for the Main Pipe	
4.3.1	Water Needs through Main Pipe (Including Agriculture)	
4.4	Water Needs through Main Pipe (Excluding Agriculture)	
CORI	CHAPTER 5: WATER NEEDS AND AVAILABILITY FOR LATERAL RIDORS 55	
5.1	Alexandria-Al Alamen Corridor	
5.1.1	Natural Resources 56	
5.1.1.	1 Water Resources	
5.1.1.	2 Mining 56	
5.1.2	Proposed Roads	
5.1.3	Domestic Water Needs	
5.1.4	Proposed Activities Water Needs	
5.1.4.	1 Agricultural Activities	
5.1.4.	2 Industrial Activities	

5.1.5	Alexadria-Alamen Water Cost	. 61
5.2	Tanta Corridor	. 63
5.3	Cairo Corridor	. 63
5.4	Fayoum Corridor	. 64
5.4.1	Natural Resources	. 64
5.4.1.1	Water Resources	. 64
5.4.1.2	Mineral Resources	. 64
5.4.1.3	Proposed Roads	. 64
5.4.2	Expected Domestic Water Needs	. 65
5.4.3	Proposed Activities Water Needs	. 66
5.4.3.1	Agricultural Activities	. 67
5.4.3.2	Industrial Activities	. 68
5.4.3.3	Tourism Activities	. 68
5.4.4	Fayoum Water Cost	. 69
5.5	Bahrya Corridor	. 72
5.5.1	Natural Resources	. 72
5.5.1.1	Water Resources	. 72
5.5.1.2	Mineral Resources	. 72
5.5.2	Proposed Roads	. 72
5.5.3	Domestic Water Needs	. 73
5.5.4	Proposed Activities Water Needs	. 74
5.5.4.1	Agricultural Activities	. 75
5.5.4.2	Industrial Activities	. 76
5.5.4.3	Tourism Activities	. 76
5.5.5	Bahrya Corridor Water Cost	. 77
5.6	Menya Corridor	. 80
5.6.1	Natural Resources	. 80
5.6.1.1	Water Resources:	. 80
5.6.1.2	Proposed Roads	. 80
5.6.2	Domestic Water Needs	. 81

5.6.3 Pi	roposed Activities Water Needs	82
5.6.3.1	Agricultural Activities	82
5.6.3.2	Industrial Activities	83
5.6.3.3	Tourism Activities	83
5.6.4 M	Ienya Corridor Water Cost	84
5.7 A	syout Corridor	87
5.7.1 N	atural Resources	87
5.7.1.1	Water Resources	87
5.7.1.2	Mineral Resources	87
5.7.2 Pr	roposed Roads	87
5.7.3 D	omestic Water Needs	88
5.7.4 Pi	roposed Activities Water Needs	89
5.7.4.1	Agricultural Activities	90
5.7.4.2	Industrial Activities	91
5.7.4.3	Tourism Activities	92
5.7.5 A	syout Corridor Water Cost	93
5.8 Q	uena Corridor	94
5.8.1 N	atural Resources	94
5.8.1.1	Water Resources	94
5.8.1.2	Mineral Resources	94
5.8.2 Pr	roposed Roads	94
5.8.3 D	omestic Water Needs	94
5.8.4 Pr	roposed Activities Water Needs and Costs	95
5.8.4.1	Agricultural Activities	96
5.8.4.2	Industrial Activities	97
5.8.4.3	Tourism Activities	97
5.8.5 Q	uena Water Cost	98
5.9 L	uxor Corridor	101
5.9.1 N	atural Resources	101
5.9.1.1	Water Resources	101

5.9.2	Proposed Roads	101
5.9.3	Domestic Water Needs	101
5.9.4	Proposed Activities Water Needs	102
5.9.4.1	Agricultural Activities	103
5.9.4.2	Tourism Activities	104
5.9.5	Luxor Water Needs Cost	105
5.10	KomOmbo-Aswan Corridor	107
5.10.1	Natural Resources	107
5.10.1.1	Water Resources	107
5.10.1.2	2Mineral resources	107
5.10.2	Proposed Roads	107
5.10.3	Domestic Water Needs	107
5.10.4	Proposed Activities water needs	108
5.10.4.1	Agriculture Activities	109
5.10.4.2	2 Industrial Activities	110
5.10.4.3	3Tourism Activities	110
5.10.5	KomOmbo-Aswan Water Needs Cost	111
CHA	APTER 6: RESULTS, CONCLUSIONS AND RECOMMENDATIONS	115
6.1	Decision Criteria	115
6.2	Ranking	119
6.3	Proposed Grouping for Lateral Corridors of Development Corridor	121
6.4	Conclusion	122
6.5	Recommendations	122

List of Tables

Table 3-1: A list of the collected data	. 16
Table 4-1: Population growth rate in lateral corridors	. 22
Table 4-2: Estimated Population and domestic water needs from 2015 to 2050	. 24
Table 4-3: Water needs for agriculture	
Table 4-4: Water needs for industrial activities	. 26
Table 4-5: Population and water needs for Tanta corridor from 2015 to 2050	. 26
Table 4-6: Population and water needs for Cairo corridor from 2015 to 2050	. 27
Table 4-7: Population and water needs for Cairo corridor from 2015 to 2050	. 27
Table 4-8: Water needs for agriculture for Fayoum corridor	
Table 4-9: Water needs for industrial activities for Fayoum corridor	
Table 4-10: Water needs for touristic activities for Fayoum corridor	
Table 4-11: Population and water needs for Bahareya corridor from 2015 to 2050	
Table 4-12: Water needs for agricultural activities for Bahareya corridor	
Table 4-13: Water needs for industrial activities along the Bahareya corridor	
Table 4-14: Water needs for tourism along Bahareya corridor	
Table 4-15: Population and water needs for Minya corridor from 2015 to 2050	
Table 4-16: Water needs for agriculture along Minya corridor	
Table 4-17: Water needs for industrial activities for Minya corridor	
Table 4-18: Water needs for touristic activities associated with Minya corridor	
Table 4-19: Population and water needs for Asyout corridor from 2015 to 2050	
Table 4-20: Water needs for agricultural activities along Asyout corridor	
Table 4-21: Water needs for industrial activities associated with Asyout corridor	
Table 4-22: Water needs for tourism activities proposed for Asyout corridor	
Table 4-23: Population and water needs for Quena corridor from 2015 to 2050	
Table 4-24: Water needs for agricultural activities for Quena corridor	
Table 4-25: Water needs for industrial activities associated with Quena corridor	
Table 4-26: Water needs for touristic activities for Quena corridor	
Table 4-27: Population and water needs for Luxor corridor from 2015 to 2050	
Table 4-28: Water needs for agricultural activities associated with Luxor corridor	
Table 4-29: Water needs for tourism activities in Luxor corridor	
Table 4-30: Population and water needs for Kom Ombo corridor from 2015 to 2050	
Table 4-31: Water needs for agricultural activities for Kom Ombo – Aswan corridor	
Table 4-32: Water needs for industrial activities for Kom Ombo – Aswan corridor	
Table 4-33: Water needs for tourism activities for Kom Ombo – Aswan corridor	
Table 4-34: Water needs through main pipe of the development corridor	
Table 4-35: Lateral corridors distances and levels.	
Table 4-36: Water needs through development corridor excluding agriculture	
Table 5-1: Population and Water Needs for Alexandria Corridor from 2015 to 2050	
Table 5-2: Proposed crops water needs for Alexandria-Alamen corridor	
Table 5-3: An Estimate for Industrial Activities Proposed Water Needs for Alexandria-	
Alamen corridor	. 60
Table 5-4: Total Water Needs for Alexandria-Alamen Corridor Activities	
Table 5-5: Alexandria-Alamen Water Pipe Costs	
Table 5-6: Alexandria-Alameen Corridor Water Needs Costs	
Table 5-7: Population and Water Needs for Fayoum Corridor from 2015 to 2050	
Table 5-8: Suggested crops water needs	
Table 5-9: An estimate for industrial activities proposed water needs for Fayoum corrido	
Table 5-10: An Estimate for tourism activities proposed water needs	
Table 5-11: Water needs for Fayoum corridor activities	

Table 5-5-12: Fayoum corridor water pipe costs	70
Table 5-13: Fayoum corridor water needs costs	70
Table 5-14: Population and water needs for Bahrya corridor from 2015 to 2050	73
Table 5-15: An estimate for suggested crops water needs and costs	75
Table 5-16: Industrial activities proposed, water needs and costs	
Table 5-17: Water needs for tourism activities	
Table 5-18: Water needs for Bahrya corridor activities	77
Table 5-19: Bahrya corridor Water needs costs	
Table 5-20: Population and water needs for Alexandria corridor from 2015 to 2050	81
Table 5-21: Proposed crops water needs	
Table 5-22: An estimate for industrial activities proposed water needs	83
Table 5-23: Water needs for tourism activity	83
Table 5-24: Water needs for Menya corridor activities	
Table 5-25: Water Pipe Costs	
Table 5-26: Menya corridor Water needs cost	85
Table 5-27: Population and water needs for Asyout corridor from 2015 to 2050	
Table 5-28: Proposed crops water needs	
Table 5-29: An estimate for industrial activities proposed water needs	
Table 5-30: Water needs for tourism activities	
Table 5-31: Water needs for Asyout corridor activities	92
Table 5-32: Asyout corridor Water needs costs	
Table 5-33: Population and water needs for Quena corridor from 2015 to 2050	
Table 5-34: Proposed crops Water needs	
Table 5-35: Industrial activities proposed, water needs and costs	97
Table 5-36: Water needs for tourism	97
Table 5-37: Water needs for Quena corridor activities	
Table 5-38: Water pipe costs	. 100
Table 5-39: Activities water needs costs	. 100
Table 5-40: Population and water needs from 2015 to 2050	. 102
Table 5-41: proposed crops water needs	. 103
Table 5-42: Water needs for tourism activities	. 104
Table 5-43: water needs for Luxor corridor activities	. 104
Table 5-44: water pipe costs	. 105
Table 5-45: Activities water needs costs	. 105
Table 5-46: Population and water needs for KomOmbo – Aswan corridor from 2015 to	
2050	
Table 5-47: Proposed crops water needs	. 109
Table 5-48: industrial activities proposed, water needs and costs	. 110
Table 5-49: Water needs for tourism activities	. 110
Table 5-50: Water needs for KomOmbo-Aswan corridor activities	. 111
Table 5-51: Kom-Ombo corridor activities water needs costs	. 112
Table 6-1: Population as criteria	. 119
Table 6-2: Population growth rate as criteria	. 119
Table 6-3: Water needs as criteria	. 120
Table 6-4: Water needs cost as criteria	
Table 6-5: Cost of 1m ³ as criteria	. 120
Table 6-6: All criteria trade off	121

List of Figures

Figure 2-1: El-Baz (2007) proposed project composed of a longitudinal highway (corrid	or)
and lateral corridors	6
Figure 2-2: Alexandria-Al alamein proposed corridor	7
Figure 2-3: Delta proposed corridor	8
Figure2-4: Cairo proposed corridor	8
Figure 2-5: Fayoum proposed corridor	9
Figure 2-6: Baharya proposed corridor	9
Figure 2-7: Minya proposed corridor	10
Figure 2-8: Asyout proposed corridor	10
Figure 2-9: Quena proposed corridor	11
Figure 2-10: Luxor proposed corridor	11
Figure 2-11: Kom ombo-Aswan proposed corridor	12
Figure 2-12: Toshka proposed corridor	12
Figure 2-13: Lake Nasser proposed corridor	12
Figure 3-1: The overall methodology of the study	15
Figure 4-1: National Strategy proposed roads	21
Figure 4-2: Expected population growth from 2015 to 2050	23
Figure 4-3: Different water demands for lateral corridors (10 ³ m ³ /year)	
Figure 4-4: Total water demands for each corridor (1000 m ³ /year)	
Figure 4-5: Water demands through main pipe of the development corridor	
Figure 4-6: Main pipe profile	
Figure 4-7: Different water needs through lateral corridors (10 ⁶ m ³ /year)	53
Figure 4-8: Total water needs for lateral corridors (10 ⁶ m ³ /year)	
Figure 4-9: Cumulative water needs through development corridor main pipe	54
Figure 5-1: The Alexandria – Al Alamen Corridor	55
Figure 5-2: Proposed roads in the national strategy	
Figure 5-3: Alexandria corridor population and water needs	
Figure 5-4: Activities water needs (10 ⁶ m ³ /year)	
Figure 5-5: Alexandria Corridor Profile	
Figure 5-6: Activities Costs (10 ⁶ \$/year) for Alexandria-Alamen Corridor	
Figure 5-7 : Tanta Region Proposed Development Activities	
Figure 5-8 : Cairo Corridor Proposed Development Activities	
Figure 5-9: Fayoum corridor	
Figure 5-10: Proposed roads in the national strategy	65
Figure 5-11: Fayoum corridor population and water needs	
Figure 5-12: Activities water needs (10 ⁶ m ³ /year)	
Figure 5-13: Fayoum corridor profile	
Figure 5-14: Activities costs (10 ⁶ \$/year) for Fayoum corridor	
Figure 5-15: Bahrya corridor	
Figure 5-16: Proposed roads in the national strategy	
Figure 5-17: Bahrya corridor population and water needs	
Figure 5-18: Water needs for activities (10 ⁶ m ³ / year)	
Figure 5-19: Activities water needs costs (10 ⁶ \$/year)	
Figure 5-20: Menya Corridor	
Figure 5-21: Proposed roads in the national strategy	
Figure 5-22: Menya corridor population and water needs	

Figure 5-23: Activities water needs (10 ⁶ m ³ /year)	84
Figure 5-24: Menya corridor profile	85
Figure 5-25: Activities water needs costs (10 ⁶ \$/year)	
Figure 5-26: The Menya corridor	
Figure 5-27: Proposed roads in the national strategy	88
Figure 5-28: Asyout corridor population and water needs	89
Figure 5-29: Activities water needs (10 ⁶ m ³ /year)	
Figure 5-30: Activities water needs costs (10 ⁶ \$/year)	93
Figure 5-31: Quena Corridor	
Figure 5-32: Quena Corridor population and water needs	95
Figure 5-33: water needs for activities (10 ⁶ m ³ /year)	
Figure 5-34: Quena corridor profile	99
Figure 5-35: Activities water needs (10 ⁶ \$/year)	100
Figure 5-36: Luxor Corridor	101
Figure 5-37: Luxor corridor population and water needs	102
Figure 5-38: Activities water needs (10 ⁶ m ³ /year)	104
Figure 5-39: Luxor corridor profile	105
Figure 5-40: activities water needs cost (10 ⁶ \$/year)	106
Figure 5-41: KomOmbo – Aswan Corridor	107
Figure 5-42: expected population and water needs 2015:2050	108
Figure 5-43: activities water needs (10 ⁶ m³/year)	111
Figure 5-44: water needs costs (10 ⁶ \$/year)	113
Figure 6-1: Water resources and demands for lateral corridor (MCM/year)	115
Figure 6-2: Lateral corridors expected population 2050	116
Figure 6-3: Proposed tourism activity on lateral corridors (rooms)	116
Figure 6-4: Proposed agriculture activity on lateral corridors (1000feddens)	117
Figure 6-5: Water needs through lateral corridors (million m3/year)	117
Figure 6-6: Water needs costs through lateral corridors (million \$/years)	118

Abstract

It is not possible to foresee establishment of a modern network of transportation systems within the confines of the Nile Valley and its Delta. In the meantime, the growth of population negates the potential of continuing to live on and utilize only 5% of the land area of Egypt. Thus, it is imperative to open new vistas for expansion outside of the inhabited strip. Development Corridor proposal provides an alternative solution to the numerous problems that face Egypt today. Despite the stated benefits there has been some debate as to the viability of the project and its potential benefits. One of the most critical components in the Development Corridor proposal would be the availability of water resources that might terminate establishing one or more of the east-west connectors.

Regardless of the availability of water resources and regardless of the fact that Egypt suffers from water scarcity, population will keep increasing and demands for horizontal expansion and for domestic water will have to be met.

The main objective of this research is to assess the Development Corridor —as a whole then part by part-from water resources point of view with the aim of providing more suitable solutions to make use of the concept of getting out of the narrow valley.

Taking into consideration the 'Egyptian National Strategy' which has the same concept of horizontal urban expansion but with more specified vision for activities and new urban areas, but also with assessing water availability and demands.

It is aimed to identify corridors for which water demands are impossible or very difficult to meet and study alternative locations for replacing these corridors. Then identify connectors that have enough water resources to meet the demands and propose them as promising starting stages.

New formulation for Development Corridor that meets the Egyptian National Strategy vision and the needs for horizontal expansion and development in large areas in the western desert to meet the highly growing population rates.