

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Assessment of Some Al Alloy Casting Produced by Special Casting Technique

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering (Design and Production Engineering)

by

Hassan Mohamed Tiwery

Bachelor of Material Science and Metallurgy Engineering
Faculty of Engineering, Tripoli University 1990

Supervised By

Prof. Adel Badawy EI-Shabasy
Prof. Iman Salah El din El-Mahallawi
Dr. Eng. Wael Fathy Hodiefa

Cairo - (2018)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production

Assessment of Some Al Alloy Casting Produced by Special Casting Technique

Ву

Hassan Mohamed Tiwery

Master of Science In Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2018

Examiners' Committee

Name and Affiliation	Signature
Prof.Dr. Tamer Samir Mahmoud	
Design and production, Benha University.	
Prof.Dr. Ahmed Mohamed Moneeb Elsabbagh	
Design and Production, Ain Shams University.	
Prof.Dr. Adel Badawy El- Shabasy	
Design and Production, Ain Shams University.	
Prof.Dr. Iman Salah El din El- Mahallawi	
Mining and Petroleum and Metallurgy, Cairo University.	

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production

Assessment of Some Al Alloy Casting Produced by Special Casting Technique

Ву

Hassan Mohamed Tiwery

Master of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2018

Supervision' Committee

Name and Affiliation	Signature
Prof.Dr. Adel Badawy El- Shabasy Design and production Engineering, Ain Shams	
University Prof.Dr. Iman Salah El din El- Mahallawi Mining and Petroleum and Metallurgy Engineering,	
Cairo University Dr. Eng. Wael Fathy Hodiefa Mining and Petroleum Engineering, Al-Azhar University	

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature
Hassan Mohamed Tiwery

Date: 29 / 3 / 2018

Researcher Data

Name : Hassan Mohamed Tiwery

Date of birth : 12/12/1966

Place of birth : Tripoli, Libya

Last academic degree : Bachelor Degree

Field of specialization : Material science& Metallurgy engineering

University issued the degree: Tripoli University

Date of issued degree : January, 1990

Current job : Teaching Assistant, Mechanical

Engineering Department, Academic

Engineering, Tajura, Tripoli, Libya.

ACKNOWLEDGEMENT

All thanks and indebted first, to Allah, who guided and helped me to go through and finish this work.

I would to express my appreciation and gratitude to the supervisors **Prof. Dr. Adel Badawy El- Shabasy & Prof. Dr. Iman Salah El-Mahallawi & Dr. Wael Fathy Hodiefa** for their sponsorship, enthusiastic guidance and valuable discussions.

My cordial second thanks are due to his Excellency **Dr. Wael Fathy Hodiefa** supervisor casting lab of Mining & Petroleum Dep. Faculty of Engineering. Al-Azhar University, his generous assistance in facilitating equipment, laboratories and encouraging me to complete this thesis and all support during the experimental work.

My great appreciation for **all the member** of labs metallurgy & petroleum Dep. Faculty of Engineering. Cairo University for their help and support during the experimental work.

My thanks **the Regional for Center of Mycology and Biotechnology**, Azhar University, Cairo, Egypt. For SEM & TEM, and also **Eng. Youssef Ali** in mechanical & production Dep. Faculty of Engineering. Cairo University.

All my love and gratitude are due to my **Mother**, **Wife and my Children**. I'm really appreciated their kindness and creating a good atmosphere during this study.

ABSTRACT

The main objective of this work is to study the enhancement of microstructure & mechanical properties of A356/ZrO₂ Metal Matrix nano composites. For completing such study different treatments were executed for the additives at different volume fraction using stir casting technique. Also heat treatment affected the fabricated composites was studied.

Recent investigation has-been divided into three parts:

Part I: This section describes the effect of using different nanoparticles feeding routes (direct, capsulate & regular) treatments of nanoparticles (as additives) on the microstructure and mechanical properties of A356 alloy.

A number of cast samples of A356 alloy were prepared by rheo-casting in a specially designed and built resistance furnace unit allowing feeding ZrO₂ nano- particles (30nm) in to the slurry in the semi-solid state with mechanical stirring at constant parameter (temp stirring 595-610°C, stirring speed 670 r.p.m at stirring time 2 minute).

Part II: This section presents the effect of different weight% of nano particles addition (1%, 2%, 3%, 4% & 5%) on the microstructure and the mechanical properties of the nano ZrO₂ reinforced A356 cast alloy.

Part III: This section presents the results obtained in this work for the microstructure and mechanical properties of capsulate feeding 3% ZrO₂ nanoreinforced A356 alloy with compare to monolithic cast A356 alloy in T6 heat treated condition. The samples were solution treated at temperature of 550°C for 2 hours, followed by aging at different temperatures (170°C&180°C), for different aging times (2, 4 & 6 hours).

The results showed that microstructure of the nano composite samples revealed grain refinement in aluminum matrix support dendrite and inter lamellar spacing in the eutectic silicon phase for the nano composite ZrO₂. The capsulate treated feeding at 3% ZrO₂ alloy has the best mechanical properties (Strength 165MPa, %Elongation 4.7& Hardness 60 HRB), compared to monolithic cast alloy (Strength 119MPa, %Elongation 4.5& Hardness 23 HRB). The heat treatment T6 produced for capsulate feeding 3%ZrO₂ Alloy result has better than monolithic casted alloy (Strength from 119MPa to 198MPa, %Elongation from 4.5 to 6,4, Hardness from 23 to 70 HRB), an effective change on morphology of the eutectic silicon lamellae. More details discussed using SEM and EDX analysis.

The nano-composites exhibited better mechanical properties when compared with the A356 monolithic alloy, also the addition of 3% ZrO₂ nanoparticles, and heat treated T6 process has the best result in mechanical properties.

Key words:

Aluminum alloy, stirring casting, ZrO₂ nanoparticles, strength, hardness, heat treatment.

CONTENTS

Acknowledgement Abstract Contents List of figures List of Tables		Page No I II IV VII XII
Chap Intro	ter1 luction:	
1.1	Motivation	1
1.2	Background	2
1.3	Aim and objective	3
Chap Litera	ter 2 ature Review	
2.1	Introduction	4
2.2	Classification of Aluminum alloys	4
2.2.1	Wrought alloy	4
2.2.2	Casting alloys	5
2.2.3	Al- designation system	5
2.3	Aluminum Silicon Alloys	6
2.4	Methods of enhancing properties of Al-Si	
	alloys	8
2.4.1	Effect of modification	8
2.4.2	Effect of Grain Refining	10
2.4.3	Effect heat treatment T6	11
2.4.4		
	nano Particles	14
2.5	Metal Matrix Composites	15
2.5.1	Liquid State Processing	16
2.5.1.	1 Stir casting	16
	2 Squeeze casting	17
2.5.2	Solid State Processing	18
2.5.3	Deposition Process	18
2.5.4	Semisolid State Processes	18
2.6	Nano reinforced composites	19

2.6.1	Nanoparticles	19
2.7	Processing techniques of MMNCs	20
2.7.1	Stir casting technique	21
2.7.2	Compo casting process	21
2.8	Factors affecting cast metal matrix	
	composites	22
2.8.1	The distribution of additives materials	22
2.8.2	Porosity in cast metal matrix composites	23
2.8.3	Wettability between the matrix alloy and	
	Particle Additives in MMCs	24
2.8.4	Interfacial chemical reaction	25
2.8.5	Factor affecting mechanical properties of	
	Metal Matrix nano Composites by stir	
	casting technique	26
2.8.5.1	Particle size	27
2.8.5.2	Additives weight fraction	27
2.8.5.3	Stirring speed	28
2.8.5.4	Stirring Temperature	29
2.9	Influence of ZrO2 particles and process	
	Parameters On the mechanical properties	
	of A356 by stir casting Process MMCs	30
Chapt	er 3	
_	imental Work:	
3.1	Introduction	34
3.2	Materials System Selection	35
3.2.1	Matrix Alloy	35
3.2.2	Additives Materials	36
3.3	Material casting and preparation	38
3.3.1	Casting technique	38
3.4	Material Characterization	43
3.4.1	Sample preparation	43
3.4.2	Microstructure Evaluation	43
3.4.2.1	Optical Microscope (OP)	44
3.4.2.2	Scanning electron microscope (SEM)	44
3.4.2.3	Transmission electron microscope (TEM)	44
3.4.3	Mechanical Characterization	47
3.4.3.1	Tensile Test	47

3.4.3. 3.5	2 Hardness Test Ageing Treatment	49 49
Chap Resul	ter 4 It and Discussion:	
4.1	Effect of Particulate Feeding Methods on Microstructure and Mechanical Properties of A356/ZrO ₂ Nano-reinforced Composite	52
4.1.1	Microstructural Evolution	53
4.1.2	Mechanical properties	57
4.2	Effect of Nanoparticles% of Microstructure And Mechanical Properties of A356/ZrO ₂ Nano- reinforce Composites	63
4.2.1	Microstructural Evolution	63
4.2.2	Microstructural Parameter	66
4.2.3	Mechanical properties	71
4.3	The Effect of Heat Treatment on Microstructure and Mechanical properties of capsulate treated feeding 3% ZrO ₂ nanoreinforced to A356 alloy Composites	76
4.3.1	Microstructural observation of the cast samples	76
4.3.2	1	78
4.3.3	•	82
4.3.4	Effect of (T6) heat treatment on tensile strength And hardness of A 356 Alloy	84
Chap	ter 5:	
	Conclusion	89
Refer	rences:	91

LIST OF FIGURES

Figure	No Title	Page No
(2.1)	Al-Si phase diagram	6
(2.2)	Commercial cast aluminum-silicon all	
	microstructures (a) hypoeutectic alloy (1.65-	
	12.6 wet% Si), (b) eutectic alloy (12.6%Si), and	
	(c) hypereutectic alloy(>12.6%Si)	7
(2.3)	Comparison of the silicon morphology in: (a)	
	unmodified (b) Sr-modified (300 ppm Sr); and	
	(c) Sb-modified (2400 ppm Sb), hypoeutectic	
	aluminum-silicon alloys	9
(2.4)	SEM microphotographs of Al–7Si alloy (a)	
	without grain refiner (b) with grain refiner	
	(1% of M13), (c) with modifier (0.02% Sr)	
	and (d) with grain refiner (1% of M13)	
	and modifier (0.02% Sr)	11
(2.5)	Diagram showing the step of the T6 heat	
	Treatment alloy	12
(2.6)	Artificial aging for A356 after solution	
	treatment at 540°c 6hr water quenched and at	
	Arterial aging at different temp	13
(2.7)	Max hardness value after solution treatment	
	540°c at different temperatures 160°c, 180°c,	
	And 190°c	13
(2.8)	Effect of micro/submicrometre additions on (a)	
	Ultimate tensile strength (UTS) and (b)	
	elongation per cent of A356 processed in	
	Semisolid state	14
(2.9)	Stir casting (vortex)	17
(2.10)	Squeeze casting technique	17
(2.11)	Design Setup of Compo Casting	22
(2.12)	Schematic diagram showing the contact angle	
	Between a liquid and solid surface. When (a) Θ	
	= 0° —perfect wettability, (b) $\theta = 180^{\circ}$ —	
	Wetting, (c) and $0^{\circ} < \theta < 180^{\circ}$ —partial wetting	25
(2.13)	Effect of nano- additions on UTS, hardness and	

	% elongation of A356.0, usingZrO ₂ (40 nm)	28
(2.14)	The effect stirring speed on UTS with 3%ZrO ₂ at	
	600° c	29
(2.15)	The effect of stirring temperature on the UTS of	
	MMC at 3% fraction of ZrO ₂ nano particles at	
	1500 r.p.m stirring speed	30
(3.1)	Preparation of casting alloys	34
(3.2)	Characterization of casting alloys	35
(3.3)	SEM micrographs ZrO ₂ (30 nm)	37
(3.4)	TEM micrographs of (30) nm ZrO ₂ particles	37
(3.5)	Casting unit used for the production of MMNCs	
	; (a) casting furnace, (b) Stirring motor, (c)	
	Furnace cover, (d) crucible, (e)axial-flow	
	impeller with 3 blades, (f) stainless- steel	
	casting mold (g) pouring and (h) fabricate cast	40
(3.6)	Mold design (a), stirrer design (b), crucible	
	design (c)	41
(3.7)	Grinding and polishing rotating disc located at	
	metallurgy &petroleum Dep Cairo University	
	Egypt	45
(3.8)	OlympusBX41M-LEDmetallurgical microscope	
	System	45
(3.9)	Jeol (JSM-5500 LV) located at Regional Center	
	of Mycology an Biotechnology, azhar	
	University, Cairo, Egypt	46
(3.10)	(Spi-Mo dule sputte- coater) located at Regional	
	Center of M cology Biotechnology, azhar	
	University, Cairo, Egypt	46
(3.11)	(jeol-1010) by using high vacuum mode at	
	80KV located Regional center of mycology and	
	Biotechnology AzharUniversity, Cairo	47
(3.12)	ASTM tensile teset (B557M-060)	48
(3.13)	Monstant universal Testing	48
(3.14)	Rockwell hardness located at production and	
	desigen Dep Cario Unversity	49
(3.15)	Elctrical (a) furnace of (1200° C), and (b)	
	ageing treatment located at mining & pet	
	Dep, Al-Azhar University, Egyp	50
(3.16)	Heat treatment procedures	51

(4.1)	Optical micrographs of A356.0 aluminum	
	alloy that cast in liquid state at700°cat X100	
	magnifications	53
(4.2)	Optical micrographs of A356aluminum alloy	
` ,	that cast in liquid state at 700°C (a) & Optical	
	micrographs of A356+3%ZrO ₂ semi solid state	
	at 610°C in (b)capsulate feeding magnification	54
(4.3)	SEM micrograph of cast A356, at 700°C (a)	
(110)	X700 (b) X2200, magnification	55
(4.4)	SEM micrograph of the micro structure of	
(-11)	(A356/3% ZrO ₂) semi solid treated at610°C,	
	flake lamellae eutectic Si (a) non- homogenous	
	distribution of the particles and clustering and	
	agglomeration of the ZrO ₂ particles within the	55
(4.5)	matrix alloy (b, c, d) at different magnification	33
(4.5)	SEM micrographs of the 3% ZrO ₂ particles	
	Showing nanoparticles agglomeration at the	
	Si particles of the eutectic structure, at	
	(a)X1200,(b) X17000, (c) X27000, (d) X	
	35000	56
(4.6)	EDX spectrum of (A35/3%ZrO2) with gold	
	foil etching	56
(4.7)	Change in UTS with nanoparticles (capsulate,	
	regular& direct) treated feeding	58
(4.8)	Variation of Elongation% with nanoparticles	
	(direct, capsulate & regular) treated feeding	59
(4.9)	Variation of hardness with nanoparticles	
	(direct, capsulate regular) treated feeding	60
(4.10)	Optical micrographs of A356.0 aluminum	
	alloy that cast in liquid state at 700°C (a)	
	& Optical micrographs of A356.0 /3%ZrO ₂	
	semi solid state at 610°C in (b) direct feeding,	
	(c) regular feeding (d) capsulate feeding	
	at X 200 magnification	64
(4.11)	SEM micrograph of cast A356, flake lamellae	
	eutectic Si &α-Al phase a700°C (a) X700, (b)	
	X2200, magnification. SEM Micrograph of	
	the micro structure of (A356/3% ZrO ₂) semi	
	solid treated at 610°C,non-homogenous	
	sona ireated at 010 C,non-nomogenous	

	distribution of the particles and clustering	
	agglomeration ZrO ₂ particles within the	
	matrix alloy (c & d).at magnification (c)	
	X7000, (d) X8000	65
(4.12)	SEM&EDX spectrum of (A356.0/3%ZrO ₂)	
	with gold foil etching at X1200	65
(4.13)	Microstructure features of cast Al alloy at	
	700°C, at X100 magnification	66
(4.14)	Microstructure features of A356/3%ZrO ₂	
	nanoparticles direct feeding semi solid state	
	at 610°C stirring time of 2 min, stirringspeed	
	rpm at X100 magnification	67
(4.15)	Microstructure features of A356/3%ZrO ₂	
	nanoparticles regular feeding semi solid	
	state at 610°C stirring time of 2 min, stirring	
	speed 670 rpm at X100 magnification	67
(4.16)	Microstructure features of A356/3%ZrO ₂	
	nanoparticles capsulate feeding semi solid	
	state at 610°C stirring time of 2 min, stirring	
	speed 670 rpm at X10 magnification	67
(4.17)	Influence of % ZrO ₂ nanoparticles addition	
	(as A356 cast alloy)and (capsulate, regular&	
	direct) treated feeding on inter-lamellar	
	spacing (µm)	70
(4.18)	Influence of % ZrO2 nanoparticles (as A356	
	Cast alloy) and(Capsulate, regular & direct	
	Treated feeding on dendrite arm length (µm)	70
(4.19)	Change in UTS with nanoparticles (capsulate,	
	regular& direct) treated feeding	73
(4.20)	Variation of Elongation% with nanoparticles	
	(direct, capsulate & regular) treated feeding	74
(4.21)	Variation of hardness with nanoparticles	
	(direct, capsulate & regular) treated Feeding	75
(4.22)	Optical micrographs of A356.0 aluminum	
	alloy as cast alloy from the liquid state 700°C	
	&A356 +3% ZrO_2 cast from the semi-solid	
	state at 610°C capsulate feeding at	
	100 magnification	77
(4.23)	SEM Micrograph of cast A356.0, flake	