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ABSTRACT

Aim of work: This study was designed to evaluate the effect of
sildenafil citrate on skeletal muscle contractility in type 2 diabetic
rats.

Materials and methods: Diabetes was induced by feeding rats with a
high fat diet (HFD) for 2 weeks followed by an intraperitoneal injection
of streptozotocin (35 mg/kg body weight). The considered rats were
divided into four groups containing ten animals for each, group1: normal
control, group 2: diabetic group, group 3: diabetic treated with
Smg/kg/day sildenafil for 4 weeks and group 4: diabetic treated with
10mg/kg/day sildenafil for 4 weeks. By the end of the experimental
period rats were sacrificed, blood samples were taken and serum was
isolated for estimation of glucose, insulin, TNF-a, IL-1pB, IL-6 and lipid
profile parameters. In addition, diaphragm contractility was determined in
the studied groups.

Results:

In the diabetic group, levels of glucose, TNF-a, IL-18, IL-6, glycosylated
hemoglobin, HOMA-IR, total cholesterol, triglycerides, LDL-cholesterol
and vLDL-cholesterol were significantly increased, while contractility
index, serum HDL-cholesterol and insulin levels were decreased. Both
doses of sildenafil significantly reversed these alterations. Moreover,
supplementation with either dose significantly ameliorated the diminished
diaphragm contractility.

Conclusion: The current study showed that sildenafil citrate has
pronounced useful effects on skeletal muscle contractility via
ameliorating the deteriorated metabolic parameters in type 2 diabetic rats.
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Introduction

INTRODUCTION

The incidence and prevalence of diabetes mellitus (DM), and its
attendant complications are rising to epidemic levels (Zimmet et al.,
2001; Deshpande et al., 2008). Diabetes mellitus is a chronic disease of
disturbed carbohydrate, fat, and protein metabolism and can result in
significant progressive and permanent physical disability (Gregg et al.,
2002; Turcotte and Fisher, 2008). In 2002, DM was reported as the
sixth leading cause of death, and the risk of mortality for individuals
with DM is twice that of individuals of the same age without DM
(National Diabetes Fact Sheet, 2005). Several comorbid conditions are
related to and accompany DM, including coronary heart disease (Gregg
et al.,, 2002; Von Korff et al., 2005), obesity (Gregg et al., 2002),
arthritis , stroke (Gregg et al., 2000), depression (Von Korff et al.,
2005), and visual impairments (Gregg et al., 2002) and have been
identified as contributors to DM-related disability (Park et al., 2006 and
2007).

The full extent of the combined effects of obesity and DM and
their respective complications on alterations in body composition and
muscular function has not been thoroughly explored. The major tissue

affected by disturbances in glucose metabolism is skeletal muscle, and



Introduction

deficits in metabolic signaling in this tissue contribute to systemic
insulin resistance (Wei et al., 2008; Turcotte and Fisher, 2008).

Approximately 60% to 70% of people with DM have mild to
severe forms of nervous system disease (National Diabetes Fact Sheet,
2005). It has been estimated that nearly 50% of all people with DM will
develop somatic sensory, motor, or autonomic peripheral neuropathy
(PN) or a combination of these types of neuropathy 25 years or later
after diagnosis. Individuals with DM and PN develop rapid muscle
weakness and motor dysfunction (Andersen et al., 1997). There are only
a few studies examining skeletal muscle strength in diabetes, thus the
current study was designed to evaluate the effect of sildenafil citrate, a
phosphodiesterase 5 inhibitor, on skeletal muscle contractility via direct

and indirect stimulation in high fat diet/streptozotocin diabetic rats.



