

ADSORPTION OF MALACHITE GREEN DYE FROM AQUEOUS SOLUTION USING DATE PITS

By

YARA ABDELRAHMAN ZAKARIA AMMAR

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE In CHEMICAL ENGINEERING

ADSORPTION OF MALACHITE GREEN DYE FROM AQUEOUS SOLUTION USING DATE PITS

By

YARA ABDELRHMAN ZAKARIA AMMAR

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE In CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Nabil M. Abd El-Monem Dr. Ramdan Abd El-Ghany Elkateb

Professor of Chemical Engineering Faculty of Engineering, Cairo University Lecturer of Chemistry

Basic Science and Engineering Department
Higher Institute For Engineering and
Technology - New Damietta

ADSORPTION OF MALACHITE GREEN DYE FROM AQUEOUS SOLUTION USING DATE PITS

$\mathbf{B}\mathbf{y}$

YARA ABDELRHMAN ZAKARIA AMMAR

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In CHEMICAL ENGINEERING

Approved by the Examining Committee	e
Prof. Dr. Nabil M. Abd El-Monem	, Thesis Main Advisor
Prof. Dr. Mohammed Hanafy	, Internal Examiner
Prof. Dr. Taha Ibrahim Farrag	, External Examiner
Professor of Chemical Engineering and Vice Dea	nn for Educational and students Affair
Faculty of Engineering, Port said University.	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Name: Yara Abdelrhman Zakaria Ammar

Date of Birth: 1 / 1 / 1992 **Nationality:** Egyptian

E-mail: Yara_amar@yahoo.com

Phone: 01144044845

Address: Damietta, Ras El Bar, street No. 49 villa No. 19

Registration Date: 1 / 10 / 2013
Awarding Date: / / 2018

Master of Science

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Porf. Dr. Nabil M. Abdel Monem Dr. Ramdan Abd El-Ghany Elkateb

Lecturer of Chemistry, Basic Science and Engineering

Department, Higher Institute For Engineering and Technology

- New Damietta

Examiners:

Prof. Dr. Taha Ibrahim Farag (External examiner)

Professor of Chemical Engineering and Vice Dean for

Educational and students Affair, Faculty of Engineering, Port

said University.

Prof. Dr. Mohammed Hanafy (Internal examiner)
Porf. Dr. Nabil M. Abd El-Monem (Thesis main advisor)

Title of Thesis:

Adsorption of malachite green dye from aqueous solution using date pits.

Key Words:

Date pits; Malachite green dye; Adsorption isotherm; Kinetics; Thermodynamic.

Summary:

The aim of the present work is the use of low cost adsorbent such as date pits for the removal of malachite green (MG) dye from aqueous solution. The effect of parameters such as contact time, initial dye concentrations, pH, adsorbent dosage and temperature were performed for MG dye by batch adsorption studies. The optimum operating conditions of adsorption of MG were obtained as contact time 30 min, adsorbent dose of 0.1 g and pH 5. Fitting equilibrium data to Langmuir, Freundlich and Temkin isotherms showed that Freundlich model was more suitable to describe MG. The kinetic studies showed that the adsorption of MG followed pseudo-second-order model. Thermodynamic parameters for MG were calculated. The surface characteristics, pore structure, bonding behavior of the samples are characterized by nitrogen adsorption/desorption (BET), scanning electron microscope (SEM), The Energy Dispersive X-ray analysis (EDX) and Fourier transform infrared spectrometer (FTIR). A single stage batch adsorber was designed for adsorption of MG by DP based on the optimum isotherm.

Insert photo here

AKNOWLEDGEMENT

Firstly, my ever big thank goes to almighty Allah for giving me the ability to complete my postgraduate study with health and peace.

Then, my thanks go to my principal supervisor Professor Dr. Nabil M. Abd El-Monem for his useful guidance and fruitful discussion. I am especially grateful and thankful to Dr. Ramdan Abd El-Ghany Elkateb for his supporting along with his endless ideas and encouragement led to this study.

Special thanks go to my mother and family members for the support, encouragement, and good wishes, without which I would not have been able to complete my thesis. I take this opportunity to express my deep sense of my future husband Mohammed Semisem for his support. In addition, special thank is extended to Yosra marouf for her cordial friendship and her support.

Table of Contents

List of Tables	iii
List of Figures	iv
List of Abbreviations	vii
Abstract	viii
CHAPTER 1: Introduction	1
CHAPTER 2: Literature Survey	3
2.1. Dyes	3
2.1.1. Classification of dyes	3
2.2. Harmful effects of dyes	7
2.3. Malachite green	8
2.3.1. Physical and chemical properties of malachite green	9
2.3.2. Uses of malachite green	10
2.3.3. Harmful Effects of malachite green	10
2.3.4. Adsorption of malachite green	10
2.4. Methods for the separation and elimination of dyes from waste water	11
2.4.1. Physical treatment methods	12
2.4.2. Chemical treatment methods	14
2.4.3. Biological treatment methods	17
2.5. Adsorption process	17
2.5.1. Adsorption isotherm	18
2.5.2. Kinetic studies	19
2.5.3. Adsorbent for dye removal	20
2.6. Overview on date pits	22
2.6.1. Chemical composition of date pits	23
2.6.2. Industrial uses of date pits	27
2.6.3. Application of date pits as adsorbent	27
CHAPTER 3: Experimental Work	33
3.1. Instruments	33
3.2. Materials	35
3.3. Experimental procedure	35
CHAPTER 4: Results and Dicussion	40
4.1. Characterization of adsorbent	40

4.1.1. Scanning electron microscopy	40
4.1.2. The energy dispersive X-ray analysis	40
4.1.3. BET analysis	41
4.1.4. FT-IR analysis	42
4.2. Factors affecting adsorption	44
4.2.1. Effect of contact time	44
4.2.2. Effect of initial dye concentration	44
4.2.3. Effect of pH	46
4.2.4. Effect of adsorbent dosage	47
4.2.5. Effect of temperature	48
4.3. Adsorption isotherms	49
4.3.1. Langmuir isotherm	50
4.3.2. Freundlich isotherm	50
4.3.3. Temkin isotherm	51
4.4. Adsorption kinetics	52
4.4.1. Pseudo-first-order model	52
4.4.2. pseudo-second-order model	53
4.5. Thermodynamic parameters	54
4.6. Process design	55
CHAPTER 5: Conclusions and Recommendations	58
5.1. Conclusions	58
5.2. Recommendations	58
References	59

List of Tables

Table 2.1: Classification of dyes according to their application	6
Table 2.2: Physical properties of malachite green	9
Table 2.1: Classification of dyes according to their application	6
Table 2.2: Physical properties of malachite green	9
Table 2.3: Adsorption capacities of various adsorbents used for MG removal	11
Table 2.4: Advantages and disadvantages of physical treatment methods	14
Table 2.5: Advantages and disadvantages of chemical treatment methods	16
Table 2.6: Advantages and disadvantages of biological treatment methods	17
Table 2.7: Chemical composition of date pits	23
Table 4.1: Brunauer-Emmett-Teller data for date pits	42
Table 4.2: The principle bands in the FTIR spectra of DP before and after adsorption	44
of MG	
Table 4.3: Effect of time on MG adsorption by DP, dosage 0.1g, natural pH and	46
room temperature	
Table 4.4: Effect of initial dye concentration on MG adsorption by DP, dosage 0.1g,	47
30 min contact time, natural pH and room temperature	
Table 4.5. Effect of pH on MG adsorption by DP, dosage 0.1g, 30 min contact time,	48
room temperature.	40
Table 4.6: Effect of dosage on MG adsorption by DP, 30 min contact time, pH 5 and	49
room temperature	
Table 4.7: Effect of temperature on MG adsorption by DP, dosage 0.1g, 30 min contact time, pH 5	50
Table 4.8: Adsorption isotherm parameters for MG adsorption onto DP	53
1 1	
Table 4.9: Adsorption rate constants of pseudo-first-order kinetics and pseudo-	55
second-order kinetics at different initial MG dye concentrations	. .
Table 4.10: Thermodynamic parameters for MG adsorption onto DP	56

List of Figures

F: 21 A 1 174	2
Figure 2.1: Acid red 74	3
Figure 2.2: Disperse blue 60.	4
Figure 2.3: Tyrian purple	4
Figure 2.4: Malachite green	5
Figure 2.5: copper phthalocyanine	5
Figure 2.6: The presumed form of Sulphur dye	6
Figure 2.7: Chemical structure of malachite green (MG)	9
Figure 2.8: Classification of low-cost adsorbents	21
Figure 2.9: Schematic representation of hydrogen bonding between nitrogen atoms of hydroxyl groups and methylene blue on the date pits surface, cellulose unit, and electrostatic attraction between methylene blue and the date Pits surfaces, cellulose	2
Figure 2.10: Binding mechanism of the Date pits, lignin and cellulose, respectively with Cd ²⁺ and Cu ²⁺	30
Figure 3.1: Scanning Electron Microscope (SEM) & Energy Dispersive X-Ray Analysis EDX	34
Figure 3.2: Fourier Transform Infrared spectroscopy (FTIR)	35
Figure 4.1.a: SEM of DP before adsorption of MG dye	41
Figure 4.1.b: SEM of DP after adsorption of MG dye	41
Figure 4.2.a: EDX images of DP before adsorption of MG dye	42
Figure 4.2.b: EDX images of DP after adsorption of MG dye	42
Figure 4.3: Brunauer-Emmett-Teller data for date pits	43
Figure 4.4.a: FTIR of the DP before adsorption of MG dye	44
Figure 4.4.b: FTIR of the DP after adsorption of MG dye	44
Figure 4.5: Effect of contact time on the adsorption of MG dye on DP, dosage 0.1g, natural pH and room temperature.	45
Figure 4.6: Effect of initial MG dye concentration onto DP, dosage 0.1g, 30 min contact time, natural pH and room temperature	46
Figure 4.7: Effect of pH on the adsorption of MG onto DP, dosage 0.1g, 30 min contact time, room temperature	47
Figure 4.8: Effect of DP dose on MG dye removal, 30 min contact time, pH 5 and room temperature	48
Figure 4.9: Effect of temperature on MG dye removal by DP, dosage 0.1g, 30	4.0
min contact time, pH 5. Figure 4.10: Equilibrium isotherms for adsorption of MG dye from aqueous solutions onto the DP.	49 51
Figure 4.11: Langmuir isotherm for adsorption of MG on DP	51
Figure 4.12: Freundlich isotherm for adsorption of MG on DP	52
Figure 4.13: Temkin isotherm for adsorption of MG on DP	52
Figure 4.14: Pseudo first-order kinetics models of MG onto DP	54
Figure 4.15: Pseudo second-order kinetics models of MG onto DP.	54

Figure 4.16: Thermodynamic fittings of MG onto DP	55
Figure 4.17: A single-stage batch absorber design.	56
Figure 4.18: Volume of effluent treated versus mass of DP for different	
percentage removal of 100 mg/l MG dye concentration	57
Figure 4.19: Volume of effluent treated versus mass of DP for 85% removal at	
different initial MG dye concentrations	58

List of Abbreviations

BET: Brunauer-Emmett-Teller

C_e: Equilibrium concentration

C_f: Final concentrationsC_i: Initial concentrationC_o: Initial concentration

C_t: The concentrations at time t

DP: Date pits

EDX: Energy Dispersive X-ray analysis

FTIR: Fourier transform infrared spectroscopy

ΔG: The free energy change
 ΔH: The change in enthalpy
 K: Equilibrium constant

K₁: Pseudo first order rate constantK₂: Pseudo second order rate constant

K_F: Freundlich constantK_L: Langmuir constantK_T: Temkin constant

M: The mass of dry adsorbent

MG: Malachite green n: Heterogeneity factor

q_e: Adsorption capacity at equilibrium.

q_m: Maximum adsorption capacity
 q_t: Adsorption capacity at time t

R: Universal gas constant ΔS : The change in entropy

SEM: Scanning electron microscope

T: The absolute temperature

V: Volume of solution

Abstract

Presence of dyes in the aquatic systems has become a critical environmental problem. Concerning the economical point of view, the use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing textile dyes from wastewater. This study explores the feasibility of using date pits (DP), an agricultural waste as an adsorbent, for removal of malachite green dye (MG) from aqueous solution.

Batch adsorption experiments were carried out for the adsorption of the dye molecule from aqueous solution onto the DP at constant room temperature 25°C and agitation speed 240 rpm. Variation effect of different parameters like solution pH, adsorbent dose, contact time, temperature and the initial concentration of the dye were studied. UV/Vis spectrophotometer technique was used for the measurement of concentration of dye before and after adsorption.

Experimental results revealed that optimal adsorption took place at an acidic solution pH. The effective solution pH, adsorbent dose and contact time on the dye removal efficiency were found to be 5, 0.1 g of date pits/50 ml of dye solution and 30 min, respectively for the adsorption studies. Fitting equilibrium data to Langmuir, Freundlich and Temkin isotherms showed that Freundlich model is an appropriate model to explain the adsorption isotherm. Adsorption kinetics were determined using pseudo first order and pseudo second order models and it was found that the adsorption process follows pseudo second order model. The thermodynamic calculations indicated the exothermic and spontaneous character of adsorption of MG dye on DP.

The characterization of the DP before and after adsorption was accomplished by FTIR, SEM, BET and EDX measurements. The FTIR results showed various functional groups, i.e., hydroxyl and carboxyl, which were identified as potential adsorption sites responsible for binding malachite green to adsorbent. SEM analysis showed the active sites available for adsorption on the adsorbent surface. The specific surface area of DP was determined as 1.1324 m²/g, obtained by the BET nitrogen gas adsorption measurements. EDX spectroscopy used for demonstrated that the surfaces of the sorbents contain various elements. A single stage batch adsorber was designed for adsorption of MG dye by DP based on the optimum isotherm. Generally the results indicate that DP may be used as a low cost adsorbent, alternative for treatment of effluents containing malachite green dye in water.

Chapter 1: Introduction

Industrial effluents are one of the main causes of environmental pollution because the effluents discharged from dyeing industries are highly colored, having a large amount of suspended organic solids [1]. Synthetic dyes are widely used in various industries, such as leather, paper, plastic, printing, textile and cosmetics, and their colored products. This dyes directed discharge to the nearest water sources such as lakes, rivers and seas. Most commercial dyes are chemically stable and are so difficult to remove from wastewater [2]. Wastewater-containing dye discharged into water bodies causes deterioration in water quality and may also have a significant impact on human health because of carcinogenic, toxic, and mutagenic effects of some dyes or their metabolites [3].

Although many adsorbents have been reported for removing some common dyes [4 -15], such as methyl orange, methylene blue (MB), malachite green (MG) and rhodamine B, it is still a challenge to search for adsorbents that are more effective, because the water-treatment industry requires highly effective, eco-friendly and lowcost adsorbents that are available in tonnage quantities. Malachite green (MG) is an organic compound that is classified as a basic dye used in the dyestuff industry and has been used traditionally as a dye for materials such as leather, silk and paper as well as in distilleries [16]. In addition, MG is also used as a fungicide, antiseptic and antibacterial in the aquaculture industry to control fish parasites and disease [17]. The products formed after the degradation of MG are unsafe having carcinogenic potential [18]. However, this dye has emerged as a controversial antimicrobial and has been banned for aquaculture use because it is highly cytotoxic to mammalian cells and acts as a tumor-enhancing substance, thereby posing significant risk to human health but also is a major cause of creating tumor in liver [19]. Therefore, the removal of malachite green from wastewater before discharge into receiving waters is very important to prevent environmental pollution in aquatic ecosystems.

Various physical, chemical and biological treatment methods have been used for the removal of dyeing effluents, such as advanced oxidation, combined chemical and biochemical process, adsorption membrane filtration, aerobic and anaerobic digestion [5, 9, 11]. Chemical treatment using flocculating agents or coagulating to remove dyes is not efficient for highly soluble dyes [20]. On the other hand, biological treatment is incapable of removing dyes from effluents on a continuous basis, whereas physical treatments such as precipitation, electrochemical destruction [21], membrane filtration, ion exchange, irradiation, and ozonation [22] have been used to treat dye-containing wastewater. Most of these processes are expensive and lead to the generation of sludge or formation of by-products [23]. Because of being inefficient and expensive, most of these processes are not used on large scale [24]. Considering the cost, effectiveness and environmental impact of these processes, adsorption is a more competitive treatment process for dye removal because of its simplicity, high efficiency and wide-ranging availability [9, 10].

So people try to develop cheaper and more effective adsorbents to remove dyes and find an alternative method from different starting materials such as bagasse pith [25], saw dust [26], rice husk [27,28], fly ash [29], melon husk [30], potato peel [31], hen feather [32], polar leaf [33], date pits [34], walnut shell [35], clay [36], papaya seed [37], Trapa bispinosa's peel and fruit [38], and pine cone powder [39].

Dates are fruits of palm trees known to the middle east region. This tree is adapted to dry climate and its fruit was the main source of energy for humans and animals. Date fruit flesh of most varieties contains high sugars (61–84 %), ash (2–4 %), low protein contents (2–4 %) and 0.1–0.5 % fats, and appreciable amount of potassium [40]. Date pits are a co-product of the date industry which represents about 10-15 % of the fruit and for a lot of years was used as animal feed [41, 34]. The average composition of the date seeds is about 6 % proteins, 1.5 % ash, 11 % fats, 52 % dietary fiber, and contains considerable amount (3.5 – 4.5 g/ 100 g) of phenolics [42, 43]. DP can be a low-cost source of dietary fiber and antioxidants [44].

The aim of this work is the use of date pits as low cost adsorbent for the removal of malachite green dye from aqueous solution. The effect of parameters such as contact time, initial dye concentration, pH, adsorbent dosage and temperature were performed in batch experiments. Adsorption isotherm, kinetic studies, thermodynamic parameters and single stage adsorber design were carried out. Therefore, effective methods for the removal of MG have been searched for in many laboratories.

Chapter 2: literature survey

2.1. Dyes

In former times, dyes were gained from mineral sources with the exception of some very expensive organic dyes from natural sources, such as of carmine from the Cochineal insect, purpur from the mollusk Murex spp and scarlet from the Kermes insect. Current time, dyes are not only obtained from the natural sources but also there are synthetic dyes. Dyes are used in a lot of industries such as paper, leather and textile. Dye is a synthetic or natural colouring material, even if insoluble or soluble, that impart its colour to a material by staining [45].

The world-use of reactive dyes increased from 60.000 tons in 1988 to 178.000 to 182.000 tons in 2011. Today, more than 10,000 different dyes are produced annually for different applications. However, 90% of the textile products are used at the level of 100 tonnes per annum or less, making for the huge variety of dyes used in the textile industry [46].

2.1.1. Classification of dyes

Dyes can be classified according to their application and their chemical structure. In term of chemical structure, dyes can be organic or inorganic compounds, both groups can be subdivided into synthetic and natural compounds. According to the dyeing method, dyes can be divided into direct, anionic or disperse dyes, here based on their application [47].

2.1.1.1. Dye Classification Based on the Chemical Structure of the Dye

2.1.1.1. Azo compounds

Azo compounds have the azo bond (two nitrogen atoms double bonded to each other: N=N) (Fig '\.'). Each nitrogen atom is bound to another group, that most often is an aryl group. There are dyes with one, two, three and even four azo groups in the molecule. The aromatic rings usually have nitro, sulphate, hydroxyl or chloro groups attached, either to increase the solubility of the dye in water or to enhance its interactions with the substrate. Today, azo dyes are widely used because of their cost effectiveness and good performance [48].

Fig 7.1 Acid red 74.