

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Urban Planning

Urban Climate Change Resilience: A Study of Sea Level Rise Impacts on Nile Delta Northern Region

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Architectural Engineering

(Urban Planning)

by

Yasmin Zakaria Meshref Kamh

Bachelor of Science in Architectural Engineering
(Urban Planning)

Faculty of Engineering, Ain Shams University, 2011

Supervised By

Dr. Marwa Abo Elfetouh Elsayed Khalifa

Assoc. Prof. Urban Planning and Design Dept. -Faculty of Engineering-Ain Shams University

Prof. Dr. Aly Nabih El-Bahrawy

Prof. Irrigation and Hydraulics Dept. -Faculty of Engineering Ain Shams University

Cairo- 2015

Urban Planning

Urban Climate Change Resilience: A Study of Sea Level Rise Impacts on Nile Delta Northern Region

by

Yasmin Zakaria Meshref Kamh

Bachelor of Science in Architectural Engineering

(Urban Planning)

Faculty of Engineering- Ain Shams University- 2011

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hany Abdel-Gawad Ayyad	
Prof. Architecture- Faculty of Engineering- Alexandria University	
Prof. Dr. Ghada Farouk Hasan	
Prof. Urban Planning and Design- Faculty of Engineering-	
Ain Shams University	
Prof. Dr. Aly Nabih El-Bahrawy	
Prof. Irrigation and Hydraulics- Faculty of Engineering-	
Ain Shams University	
Dr. Marwa Abo Elfetouh Elsayed Khalifa	
Assoc. Prof. Urban Planning and Design- Faculty of Engineering-	
Ain Shams University	

Date: 24 December 2015

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Architectural Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Vacmin	Zakaria	Meshref	Kamh
i asiiiiii	Lanaija	MICSILLEI	Manin

Signature

Date:24 December 2015

Researcher Data

Name : Yasmin Zakaria Meshref Kamh

Date of birth : 28-01-1990

Place of birth : El-Giza

Last academic degree : Bachelor of Science in Architectural Engineering

Field of specialization : Urban Planning

University issued the degree : Ain Shams University

Date of issued degree : 2011

Current job : Teacher Assistant at The Higher Institute for

Engineering and Technology-5th Settlement

بسم الله الرحمن الرحيم

ا به المهاد الم

صدق الله العظيم

سورة البقرة - الآية (32)

Summary

This thesis aims at studying the impacts of the Sea Level Rise (SLR) and measuring the level of urban community resilience on the region of Northern Nile Delta, with special reference to Alexandria (Egypt) as one of the cities subject to the impacts of SLR resulted from climate change. Additionally, the research compares Alexandria to a similar region; namely the Northern Coast of Java Island, with particular focus on Jakarta (Indonesia) as one of the most threatened cities by SLR in terms of exposed population.

In this regard, the current thesis addresses two main problems and suggests suitable recommendations for them. **Firstly**, the lack of resilience strategies in urban planning development in the Northern Coast of Nile Delta, which is considered a highly threatened zone by SLR impacts, specifically floods. Hence, increasing the vulnerability of the inhabitants of this areas. **Secondly**, the undetermined stakeholders and their responsibilities regarding the reduction of the impacts of SLR on this affected zone and lack of coordination, which lead to the incapability of identifying their role in increasing the resilience of the affected community by SLR. Specifically that the severity of floods is expected to increase in the 2070- according to the recent studies of the Organization for Economic Cooperation Development (OECD), hence, these two problems are expected to increase the vulnerability of the Northern Coast of the Nile Delta region.

This thesis addresses the first problem by exploring various techniques applied in two mega coastal cities: Alexandria (Abo-Qeer zone) in Egypt and Jakarta (Pademangan zone) in Indonesia. This selection is mainly due to their naturally low topography below the sea level and the rank of the two cities in terms of population exposed to coastal flooding by 2070 as the 11th and the 20th respectively among 20 cities according to the OECD. Lately these ranks have been modified into the 1st and the 11th respectively according to recent researches.

Moreover, an index has been developed to measure the level of communities' resilience in these mega coastal cities using a Flood Disaster Resilience Index (FDRI). This index is developed on five resilience-based capitals: Governance, Economic, Natural, Physical and Social. Different methods have been employed to measure these capitals using the FDRI; these include literature review, questionnaires, and in-depth interviews held by the researcher.

Furthermore, statistical analysis is carried out using Microsoft Office Excel. This analysis indicated that higher values of resilience are correlated with higher preparedness to cope with flood-related disasters and vice versa. It also shows that there are various types of vulnerability characteristic of each city. Based on this analysis, recommendations are presented to enhance the community resilience against flood-related disasters. In the overall, FDRI performance for both cities showed that the highest performance is achieved in the Governance Capital. However, as for the Natural Capital, Alexandria city has a higher preparedness than Jakarta. Regarding the Social Capital: Jakarta's performance is higher than Alexandria's. In general, results showed strength and weaknesses in one capital or another.

This thesis addresses the second problem which is the overlapping and lack of coordination in the responsibilities of possible stakeholders regarding the reduction of the impacts of SLR on this affected zone by literature review, the indepth interviews and the questionnaires. The findings of this thesis showed clear determination for the concerned stakeholders and their responsibilities for both cities. Moreover, these findings shown that the availability of cooperation efforts between theses stakeholders are high in Jakarta than Alexandria, especially between the government and academic representatives and between the academic representatives and NGOs. This is resulted from the increase of social awareness of flood disaster in Jakarta which leads to the effective participating between the community individuals, government, NGOs and academics to enhance the community resilience of the affected community by floods.

Key words: climate change, sea level rise, Alexandria, Jakarta, Flood Disaster Resilience Index, community resilient

Acknowledgment

First of all, thanks and praise go to Allah for granting me help in completing this work.

I would like to express my thankfulness and gratitude to my supervisors, Prof. Aly N. El-Bahrawy and Assoc. Prof. Marwa A. El-Said, for suggesting the research topic, and for their helpful advice, encouragement, patience and the time they generously granted me during the time I spent at writing this thesis.

Special thanks to all my professors at Urban Planning and Design Dept., Faculty of Engineering, Ain Shams University, for providing me with valuable advice and guidance that helped me to complete this research.

Special thanks are extended also to Prof. Fouad A. Soliman, Head of Electronics and Computer Dept., Nuclear Materials Authority, for providing me with a lot of valuable materials during the course of this work.

I would also like to express my thankfulness to Assoc. Prof. Naaela H. Mahmoud, Faculty of Women for Arts, Science and Education, Ain Shams University, for providing me with useful tips throughout the research work.

Thanks are also extended to Center for Natural Resources and Development (CNRD) for giving me an opportunity to follow up my field work of the thesis in Indonesia, University of Gadjah Mada . My deepest thanks to Prof. Dr. Muh A. Marfai and Mrs. Pipit D. Fitria as well, Ms. Desy W. Tyas, Gadjah Mada University, Yogyakarta, Indonesia. Moreover, thanks extended to all my colleagues in the University of Gadjah Mada for their valuable help and guidance during my residence at Indonesia.

I would also like to express my thankfulness to Prof. Dr. Hany M. Ayyad, Faculty of Engineering, Alexandria University, and Prof. Dr. Abo- Bakr Eid, CoRI, Alexandria, for their valuable time and information.

Finally, I am so grateful to my parents, Prof. Dr. Sanaa A. Kamh and General Zakaria M. Kamh and to my beloved sister and brother, Mai and Mohammed for their continuous support, endless love and nonstop encouragement during the research period.

December 2015

Table of Contents

Summary	I
Acknowledgment	III
Table of Contents	IV
List of Figures	VII
List of Tables	
List of Abbreviations	
Chapter 1: Introduction	
1.1. Research Problem	
1.2. Research Aim and Objectives	
1.3. Research Questions	
1.4. Research Methodology	
1.4. Research Structure	
Chapter 2: Causes and Impacts of Climate Change and Sea Leve	
2.1. Definitions of Climate Change	7
2.2. Causes and Impacts of Climate Change	7
2.2.1. Drivers of climate change according to IPCC classifications	8
2.2.1.1. Chain of Greenhouse Gases emissions	8
2.2.1.2. Atmospheric concentrations	10
2.2.1.3. Global warming	
2.2.2. Classifications of the impacts of climate change	11
2.3. Sea Level Rise and its Impacts	21
2.3.1. Causes of sea level rise	21
2.3.2. Scenarios of sea level rise	23
2.3.2.1. Global scenarios of sea level rise	23
2.3.2.2. Scenarios for sea level rise in the Northern coast of N	lile Delta
region	26
2.3.3. Impacts of sea level rise on the Northern coast of the N	ile Delta
region	
2.3.3.1. Alexandria	
2.3.3.2. Rosetta	
2.3.3.3. Damietta	
2.3.3.4. Port Said	29

	2.4. Floods and their Impacts	30
	2.4.1. Definitions of Floods	30
	2.4.2. Characteristics of floods	30
	2.4.3. Causes and impacts of floods and flash floods	31
	2.4.4. Floods and sea level rise	
	2.4.5. Egypt and flash floods	
	2.5. Concluding Remarks	33
C	Chapter 3:Responding to Climate Change with Focus on Sea Level Rise	36
	3.1. Global Approaches to Climate Change	36
	3.2. Definitions of Urban Resilience	38
	3.3. Community resilience: definitions and components	39
	3.4. Measuring community resilience	
	3.4.1.1. Climate Disaster Resilience Index	
	3.4.1.2. Disaster Resilience of Place Model	42
	3.4.1.3. Capital-Based Approach Framework	45
	3.5. Global Reduction of the Impacts of Sea level Rise	47
	3.6. Egyptian Response to Climate Change and Sea Level Rise	52
	3.6.1. Egyptian mitigation response	52
	3.6.2. Egyptian adaptation efforts	53
	3.7. Egypt's National Strategy for Adaptation to Climate Change	and
	Disaster Risk Reduction	56
	3.8. Concluding Remarks	59
C	Chapter 4: Methodology	60
	4.1. Summary of the Findings of Literature Review	60
	4.2. Justification of the Adopted Conceptual Framework	60
	4.3. Adopted Measurement Technique	62
	4.4. Steps for Developing the FDRI	
	4.4.1. Establishing the FDRI index	
	4.4.2. Testing the applicability of the FDRI.	
	4.4.2.1. Quantitative analysis: Individual indicators	64
	4.4.2.2. Qualitative analysis: Stakeholders analysis	64
	4.5. Adopted Comparative Analysis Approach	64
	4.6. Selection of Test Sample	65
	4.6.1. Selection of cities	65
	4.6.2. Selection of districts	67

4.6.3. Selection of zones	69
4.7. The Process of Developing the FDRI	73
4.7.1. Purposes of developing the FDRI	73
4.7.2. Stakeholders	
4.7.3. Key issues of concern	74
4.7.4. The Representative Indicators of the FDRI	74
4.8. Concluding Remarks	77
Chapter 5:Measuring Community Resilience Using the FDRI	78
5.1. Why Choosing the Flood Disaster?	78
5.2. Descriptive Analysis	78
5.3. Adopted Mathematical Techniques	80
5.4. Stakeholders Analysis	82
5.5. Analyzing and Justification Results	85
5.5.1. Overall performance	86
5.5.2. Overall performance by variables and indicators	86
5.6. Concluding Remarks	92
Chapter 6:Conclusions and Recommendations	93
6.1. Conclusions	93
6.2. Future work	99
References	101
Appendix A: Selected global climate change impacts on indu	
transportation	
Appendix B: Activation the policies of boosting reforestation in Ch	
AppendixC: Relationship between green building codes an	nd GHG
emissions	
Appendix D: Selected examples of the Egyptian CDM projects	
Appendix E: Question of the in-depth interviews	
Annendix F. Questionnaire form distributed among citizens	123

List of Figures

Figure 1-1: Thesis structure5
Figure 2-1: Classification of climate change drivers according to IPCC
Figure 2-2: Mechanism of GHG9
Figure 2-3: Global human resources for GHGs emissions
Figure 2-4: Atmospheric concentrations of CO ₂ , CH ₄ and N ₂ O
Figure 2-5: Comparison of observed simulated results by climate models 11
Figure 2-6: Climate change impacts according to IPCC's classification 12
Figure 2-7: Negative consequences for ecosystem caused by climate change 15
Figure 2-8: Relative vulnerability of coastal deltas as shown by indicative population potentially displaced by current sea level trends to 2050
Figure 2-9: General topography of the Nile Delta region indicating areas below mean sea level
Figure 2-10: Nile Delta regions affected by SLR by 2050
Figure 2-11: Coastal erosion changes as observed for Rashid zone
Figure 2-12: Causes of sea level rise and rising temperature
Figure 2-13: Variability of sea level rise process by location
Figure 2-14: Past, present and predicted sea level trends in A1B scenario 23
Figure 2-15: Summary for characteristics of the four main SRES families 24
Figure 2-16: Schematic illustration of SRES scenarios
Figure 2-17: Nile Delta Northern Region
Figure 2-18: Causes of coastal flooding
Figure 2-19: Direct causes and impacts for climate change and SLR35
Figure 3-1: Selected examples for global adaptation measures
Figure 4-1: Original and modified adapted frameworks
Figure 4-2: Location of Alexandria and Jakarta form the world
Figure 4-3: Top 20 cities ranked in terms of population exposed to coastal flooding

Figure 4-4:Top 20 cities with the highest proportional increase in exposed assets
Figure 4-5: General topography of the Nile delta a selection on Abo-Qeer 67
Figure 4-6: Topography of North Jakarta with a selection on Pademangar District
Figure 4-7: Diverse classification of socio-economic tiers, age and gender for the test sample- a: Abo-Qeer, Alexandri
Figure 4-8: Illustration for the study area in Egypt on four levels: country- city-district- zone
Figure 4-9: Illustration for the study area in Indonesia on four levels: country-city- district- zone
Figure 5-1: Descriptive analysis for samples of Pademangan and Abo-Qeer 79
Figure 5-2: Stakeholder analysis for both cities: a:Alexandria, b:Jakarta 82
Figure 5-3: Overall FDRI performance among the five capitals for Alexandria and Jakarta cities