

MEASUREMENT OF CARNITINE IN PRETERM NEONATES SUFFERING RESPIRATORY DISTRESS SYNDROME AND THE EFFECT OF ITS SUPPLEMENTATION

Thesis

Submitted for the Fulfillment of the Ph.D. In Childhood Studies (Child Health and Nutrition)

Presented By

MARWA AHMED ABD ELRHEEM

M.B., B.Ch. M.Sc. Pediatrics Ain Shams University

Under Supervision of

Dr. KHALED HUSSEIN TAMAN

Professor of Pediatrics
Institute of Postgraduate Childhood Studies
Ain Shams University

Dr. OSAMA KAMAL ZAKI

Consultant of Medical Genetics Ain Shams University

Dr. MAIFSOON SFI MY KHEDER

Assistant Consultant of Pediatrics Al-Galaa Teaching Hospital

Institute of Postgraduate Childhood Studies
Ain Shams University
2017

Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my sincere gratitude to **Prof. Dr./ Khaled Hussein Taman,** Professor of Pediatrics Institute of Postgraduate Children Studies, Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to **Prof. Dr./ Osama Kamal Zaki,** Consultant of Medical Genetics, Ain Shams University, for his valuable efforts and tireless guidance and meticulous supervision throughout this work and for **Dr. Samar Samy,** Chemist in the Genetic Laboratory, for her help and support.

I would like also to thank **Dr./ Maiesoon Selmy Kheder,** Assistant Consultant of Pediatrics, Al-Galaa Teaching Hospital, for the efforts and time she has devoted to accomplish this work with me and for sincere help and support.

Last but not least, I like to thank all my **Family**, and my **dear friends** for their kind help, encouragement and support.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Prematurity	5
Respiratory Distress Syndrome	29
Carnitine	96
Patients and Methods	119
Results	128
Discussion	150
Summary	162
Conclusion and Recommendations	165
References	166
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

AAP : American Academy of Pediatrics

AT : Antitrypsin

CLD : Chronic lung disease

COXIs : Cyclooxygenase inhibitors

CP : Cerebral palsy

CPAP : Continuous positive airway pressure

DPPC: Dipalmitoyl phosphatidylcholine

ELBW : Extremely low birth weight

FiO2 : Fractional inspired oxygen

EPT : Extremely preterm

FRC : Functional residual capacity

HF : High-flow nasal cannulae

HFOV : High-frequency oscillatory ventilation

HMD : Hyaline membrane disease

LBW: Low birth weight

LCAD : Long-chain acyl-CoA dehydrogenase

MCAD : Medium-chain acyl-CoA dehydrogenase

MV : Mechanical ventilation

NDI : Neurodevelopment impairment

NEC : Necrotizing enterocolitis

NICHD : National Institute of Child Health and Human

Development

NIPPV : Nasal intermittent positive pressure ventilation

NRN : Neonatal Research Network

PCVC: Peripherally inserted central venous catheter

PDA : Patent ductus arteriosus

PEEP : Positive end expiratory pressure

PIP : Peak inspiratory pressure

PPHN: Persistent Pulmonary hypertension

PPV : Positive-pressure ventilation

PVR : Pulmonary vascular resistance

RDS : Respiratory distress syndrome

ROP : Retinopathy of prematurity

SCAD : Short-chain acyl-CoA dehydrogenase

SCHAD : Short-chain 3-hydroxyacyl-CoA

dehydrogenase

SM-score: Silverman score

SP-D : Surfactant protein–D

SPSS : Statistical package for the social science

TPN: Total parenteral nutrition

V/Q : Ventilation-perfusion

VLBW: Very low birth weight

VLCAD : Very long-chain acyl-CoA dehydrogenase

VPT : Very preterm

List of Tables

Table No	. Title	Page No.
Table (1):	Preterm infants' classification by BW	6
Table (2):	Risk factors for preterm delivery:	8
Table (3):	Neonatal problems associated with premature infants:	9
Table (4):	Downes' score	61
Table (5):	The Silverman- Anderson retraction s	score61
Table (6):	ABG score	65
Table (7):	Differential diagnosis of RDS	74
Table (8):	Target prep-ductal SPO ₂ after birth	78
Table (9):	Guidelines for monitoring oxygen saturation levels by pulse oximetry	82
Table (10):	Ventilatory strategy and indications of mechanical ventilation in RDS	
Table (11):	Causes of Secondary Carnitine Defici	iency107
Table (12):	Neonatal Descriptive data of the study control groups	*
Table (13):	Maternal data of the study and contro groups	
Table (14):	Laboratory data of the study and cont groups	
Table (15):	Comparison between the study and cogroups, according to PH value of the gases.	blood

Table (16):	Clinical data of the study and control groups	134
Table (17):	Baseline assessment of Serum Carnitine, of the study and control groups.	136
Table (18):	Comparison between studied groups regarding neonatal descriptive data	137
Table (19):	Maternal data of the studied groups	138
Table (20):	Serum Carnitine level in studied groups before and after supplementation	139
Table (21):	Clinical data of the studied groups	140
Table (22):	Mechanical ventilation in studied groups	143
Table (23):	MV duration in the studied groups	144
Table (24):	PH value of the studied groups	145
Table (25):	Length of hospital stay in the studied groups	146
Table (26):	Mortality in studied groups	147
Table (27):	Correlation between serum carnitine and neonatal and maternal data	147
Table (28):	Linear regression analysis of lower serum carnitine	148

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Lung development during embryonic (A-F) and pseudo gland (G, H)	dular
Figure (2):	Lung development canalicular saccular (B), and alveolar stages organogenesis (C, D)	s of
Figure (3):	Composition of surfactant	35
Figure (4):	Synthesis, recycling and catabolism lung surfactant	
Figure (5):	Schematic representation of the com- series of acute and chronic events lead to neonatal respiratory dis- syndrome	that tress
Figure (6):	Pathway of surfactant from the lung to amniotic fluid and some of factors that can modulate the events	f the
Figure (7):	Volume-pressure curve show difference in inflation and deflation of the volumes at a given pressure (hyster and is due to the presence of surfacta	ation esis)
Figure (8):	Diffusion of gases across the alvection capillary membrane. RBC, red b cell	lood
Figure (9):	Photograph of an autopsy specidemonstrates small at electatic liwith focal hemorrhage visible on pleural surface	ungs the

Figure (10):	Histologic features of RDS show collapsed acini surrounding dilated alveolar ducts lined by smooth homogeneous hyaline membranes	50
Figure (11):	(A) Model showing the formation of a new liquid bubble at the end of a tube.(B) Graph showing the distending pressure required to maintain the bubble's size (volume) at various stages	52
Figure (12):	Relationship between gestational age at birth and the incidence of respiratory distress syndrome (RDS)	55
Figure (13):	Specific contributory causes of apnea. CNS, central nervous system	60
Figure (14):	Carnitine sources and distribution	98
Figure (15):	Pathway of L-carnitine synthesis	99
Figure (16):	The carnitine cycle in fatty acid oxidation	101
Figure (17):	Fatty acid oxidation during fasting	102
Figure (18):	Ballard score	123
Figure (19):	Birth weight of the study and control groups	129
Figure (20):	Sex distribution of the study and control groups.	130
Figure (21):	Mode of delivery of the study and control groups	
	<u> </u>	
Figure (22):	Maternal age of the study and control groups	131

Figure (24):	PH value the study and control groups according to PH	133
Figure (25):	SM score of the study and control groups.	
Figure (26):	FIO2 of the study and control groups	
Figure (27):	RD grade of the study and control groups.	135
Figure (28):	Serum Carnitine of the study and control groups.	
Figure (29):	Serum Carnitine level in studied groups before and after supplementation	139
Figure (30):	SM score in the studied groups	141
Figure (31):	FIO ₂ in the studied groups	141
Figure (32):	RD grade D1 in the studied groups	142
Figure (33):	RD grade D7 in the studied groups	142
	Mechanical ventilation distribution of group A	
Figure (35):	Mechanical ventilation distribution of group B.	143
Figure (36):	Duration of MV in studied groups	144
Figure (37):	PH value of blood gases in the studied groups.	145
Figure (38):	Length of hospital stay in the studied groups.	146
Figure (39):	Odds ratio analysis of lower serum carnitine.	149

Abstract

Respiratory distress syndrome (RDS) is among the *most* common diseases of preterm infants. RDS is caused by a decreased production or secretion of pulmonary surfactant. Numerous causes of RDS have been identified, and the factors suspected to be involved in the pathogenesis of RDS are numerous. Carnitine is essential for the fetus and is provided via placental transport. As the gestational age increases, fetal tissues store increasing amounts of require exogenous carnitine, therefore, preterm infants supplementation for carnitine homeostasis. Treatment with carnitine has shown benefit in the respiratory status of ventilator-dependent adults, as well as stabilization of respiratory parameters and increased physical performance in adult patients with chronic respiratory insufficiency.

<u>Aim of the work:</u> The present study was designed to measure the level of free carnitine in preterm neonates with RDS and to evaluate the efficacy of L~ camitine therapy on those neonates.

Methodology; Forty preterm infants, including 14 females and 26 males. Study group were divided in to 2 groups, group A: received L-camitin in a dose of 30 mg/kg/day for 7 days and group B: did not receive supplementation.

Results:

Our results show non statistically significant difference between group A (with Carnitine supplementation) and group B (no supplementation) at day 1. There was statistically significant higher serum carnitine level in group A compared to group B at day 7 (after supplementation). Seven neonates (35%) in group A, and 13(65%) in group B, needed surfactant administration and MV after 24 hs from admission and this difference was statistically significant. Dose of surfactant was statistically significant lower in group A compared to group B (P=0.001) and duration of mechanical ventilation was statistically significant lower in group A compared to group B (p=0.03).

Key words: RDS, Carnitine supplementation, Surfactant, MV

□ INTRODUCTION

Respiratory distress syndrome (RDS) is the most common threatening respiratory disorder of newborns and it is the most common cause of respiratory failure in the first days after birth. It occurs mainly in preterm neonates (*Jackson et al.*, 1994).

RDS occurs as a result of deficiency or absence of surfactant which is very important for lung maturity as it decreases the surface tension of alveoli and keeps the stability of the alveoli, so its absence leads to atelectasis and respiratory distress syndrome (*Moya et al.*, *1994*).

The incidence and severity of respiratory distress syndrome (RDS), also known as hyaline membrane disease (HMD), are related inversely to the gestational age of the infant. The classic clinical presentation of RDS includes grunting respiration, retractions, nasal flaring, cyanosis, and increased oxygen requirement together with diagnostic radiographic findings and the onset of symptoms shortly after birth (*Rodriguez et al.*, 2006).

Fanaroff et al. (2007) reported results of the National Institute of Child Health and Human Development (NICHD), neonatal research network study, which showed that rates of RDS were 42%, 71%, 54%, 36%, and 22% in infants weighing 501-1500 g, 501-750 g, 751- 1000g, 1001-1250 g, and 1251-1500 g, respectively.

Surfactant is synthesized and secreted by type II epithelial cells in the alveolus. It is composed primarily of phospholipids; Phosphatidylcholine and phosphatidylglycerol (*Whitsett et al.*, 2005).

Carnitine is a small amino acid derivative, plays a major role in fatty acid oxidation as well as in other central metabolic pathways. Fatty acid oxidation is an important energy-providing pathway in early postnatal period. Carnitine has a role not only in energy production, but also as a secondary antioxidant, favoring fatty acid replacement within previously oxidatively damaged membrane phospholipids (*Arenas et al.*, 1998).

Carnitine is a naturally occurring hydrophilic amino acid produced endogenously in the kidneys and liver and derived from meat and dairy products in the diet. It plays an essential role in the transfer of long-chain fatty acids into the mitochondria for beta oxidation (*Scaglia*, 2006).

The low levels of L-carnitine present in plasma during pregnancy and the immaturity of liver L-carnitine biosynthetic pathway in preterm neonates may be important determinants in the pathogenesis of respiratory distress syndrome (RDS) (*Arduini et al.*, 2001).

Antepartum administration of L-carnitine has been shown to enhance the dipalmitoyl phosphatidylcholine (DPPC) content of fetal rat lung. DPPC is the most important constitute, functionally and quantitatively, of the surfactant complex (*Lohninger et al.*, 1996).

Decreased neonatal serum carnitine levels in preterm infants with RDS during the first week of life might be caused by increasing consumption of carnitine in lung tissue for surfactant synthesis (*Ozturk et al.*, 2006).

AIM OF THE STUDY

The aim of the present study was to measure the level of free carnitine in preterm neonates with respiratory distress syndrome (RDS) and to evaluate the effect of its supplementation on them regarding, the respiratory distress course, the duration of mechanical ventilation and the RDS outcome.