Ain Shams University Faculty of Science Geophysics Department

Hydrocarbon Reservoir Modeling of Taurt Field, Ras El-Barr Concession, Nile Delta, Egypt.

A Thesis Submitted In Partial Fulfillment of The Requirements For The Master
Degree of Science In Applied Geophysics

BY

Eman Maddan Abd El-Rhman Abd El-Ghafour

(B. Sc. In Geophysics, 2012)

Faculty of Science – Ain Shams University

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Dr. Abdullah M. E. Mahmoud

Assistant professor of Geophysics Geophysics Department – Faculty of Science – Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Lecturer of Geophysics

Geophysics Department – Faculty of Science – Ain Shams University

Mr. Magdy Abdalhay Mohamed Senior Geophysicist, BP Egypt / PHPC

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment of the requirements of the Master degree of Science in Geophysics. Besides the research work materialized in this thesis, the candidate has attended six post-graduate courses for one year in the following subjects:

- 1. Geophysical Field Measurements
- 2. Numerical Analysis and Computer Programming
- 3. Petrophysical Properties of Rocks and Advanced Well Logging
- 4. Formation Evaluation and Reservoir Evaluation
- 5. Subsurface Geology and Geophysical Prospecting
- 6. Sedimentary Basin Analysis and Fluid Dynamics

The candidate has successfully passed the final examinations of these courses. In fulfillment of the language requirement of the degree, the candidate also passed the final examination of a course in the English language.

> Head of Geophysics Department Prof. Dr. Salah Abdel Wahab

Acknowledgments

Firstly, I want to thank Allah, What was a good deed is from Allah and what was bad is from me.

I would like to express my deep and grateful thanks to **Dr. Abdallah Mahmoud,** Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for supervising this study, his valuable help and comments, as well as reading and reviewing the manuscript.

I would like to express my deep and grateful thanks to **Dr. Azza Abd El-Latif El-Rawy**, Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, **Mr. Magdy Abdalhay Mohamed**, Senior Geophysicist, BP Egypt / PHPC, for the supervision, support needed for this study, and reading and reviewing the manuscript. I would also like to thank **Dr. Samir Raslan**, Subsurface Assistant General Manager, Pharaonic Petroleum Company, for providing the data and outline of the study.

I would like to express my sincere thanks to **Dr. AbdElkhaleq Elwerr** Professor of Seismic Methods, Geophysics Department, Faculty of Science, Ain Shams University for his valuable comments. A great appreciation for **Mr. El-Sayed Fathi**, geoscientist, reservoir modeler in international petroleum service company and all my colleagues for helping me through this work.

I also thank EGPC Information Center (Egyptian General Petroleum Corporation) for providing the data used in the study.

Dedication

I would like to express the deep sense of gratitude towards my family for their patience, fortitude and understanding. Their love and devotion kept me going and I am extremely grateful to them for their encouragement and support.

Abstract

The offshore Nile Delta is one of the most promising areas for gas exploration and production in Egypt and the Middle East where proven reservoirs within Nile Delta cone vary in age from Oligocene to Pleistocene. The area of study; Taurt Field is located in the Ras El-Barr concession approximately 72Km from offshore in the East Nile Delta area at a fault block to the northeast of Ha'py Field and northwest of the Denise Field in 108 m water depth. Taurt Field discovered with the drilling of Taurt-1 well in March 2004 and then Taurt-2 appraisal well in June 2004 by British Petroleum Company (Bb).

Taurt is the first subsea-to-shore gas field development in BP's portfolio and the first subsea well production for BP Egypt. Taurt consists of five Pleistocene sand reservoir units in Mit Ghamr Formation called S10, S20, S30, S40 and S50. The recent study is focus on evaluation of S10, S20 and S30 reservoir units. Down holes fluid samples have been collected from the exploration and the appraisal wells, which indicate that the reservoir fluids are considered dry gas.

This study includes petrophysical evaluation of five wells (T-01, T-02, T-03 and it's side track T-03-ST-01, T-04 and T-05) distributed in Taurt Field and 3D seismic data interpretation of Pleistocene sand reservoir units in Mit Ghamr Formation.

Well logging analysis for reservoir units led to the following observations; The reservoir units in Mit Ghamr Formation are deposited in sand bar shape in shallow marine depositional environment. S20 unit represents the main reservoir within Taurt Field because it contains maximum gas saturation.

The analysis of MDT pressure data is concerned mainly with locating the different fluid contacts, vertical connection between sand levels in sand reservoir units and determining the pressure gradients of the gas-bearing zones. Very close pressure regimes are detected for most of the investigated gas zones throughout the study area.

The constructed litho-saturation cross plots reflect the vertical variation of the petrophysical characteristics and iso-parametric maps verify the lateral variation of petrophysical properties.

3D seismic interpretation was carried out on Top and Base of S10, S20 and S30 reservoir units. Different types of mapping of the reservoir units clarify the presence of four way dip closures for S10, S20 units, two way dip closure for S30 unit and thickness variation for each unit. These closures dissected by a series of normal faults in NW-SE, NW-SW and E-W directions.

Different types of seismic attributes (RMS, Max negative amplitude, trace envelope, variance, spectral decomposition and geo-body extraction) clarify the locations of high amplitudes "bright spots" which reflect the reservoir presence, faults pattern, lateral and vertical extension of sand reservoir units.

The results from well logging analysis and 3D seismic data interpretation were collected together to build-up the 3D static reservoir modeling. Static model is a representative tool by which the facies, petrophysical properties and structure can be imagined. Also fluid contact model give general idea about hydrocarbon volume in place. Such static model can support the detection of suitable places for hydrocarbon potential.

Mit Ghamr reservoir static model shows a combined trap with thickness variation. The thickness increases in south direction bounded by syn-depositional growth normal fault. This reservoir is subdivided into three units S10, S20 and S30 composed of sand and shale intercalations. Higher effective porosity and saturation values were noticed for the sand, while lower values are found for the shale.

From the volumetric calculations, it is clear that the southern closure at S20 unit holds the highest volumes of hydrocarbons (726bcf), while the central closure of S30 unit hold less volumes (47bcf).

Keywords: Taurt Field, Well logging, Seismic attributes, Static model and Volumetric calculations.

List of Content

	Page
Subject	no.
Acknowledgment	II
Abstract	III
List of Contents	V
List of Figures	X
List of Tables	XIX
Chapter 1: Introduction	
1.1 Introduction to Nile Delta	1
1.2 Area of Study	2
1.3 Exploration History of Nile Delta	3
1.4 Aim and Objectives	7
1.5 Available Data	8
1.6 Methodology and Techniques	9
Chapter 2: Geological Setting of Nile Delta	
2.1 Introduction	11
2.2 Regional Stratigraphic Setting of Nile Delta	13
2.2.1 Pre-Cambrian	14
2.2.2 Paleozoic Period	16
2.2.3 Mesozoic	16
2.2.3.1 Triassic	17
2.2.3.2 Jurassic	17
2.2.3.3 Cretaceous	18
2.2.4 Cenozoic	20
2.2.4.1 Paleogene	20
2.2.4.1.1 Paleocene	20
2.2.4.1.2 Eocene	20
2.2.4.1.3 Oligocene	21
2.2.4.2 Neogene	21
2.2.4.2.1 Miocene	22
2.2.4.3 Pliocene	26

2.2.4.4 Quaternary	28
2.3 Stratigraphy of Taurt Field	30
2.4 Regional Structural Framework of Nile Delta	30
2.5 Regional Tectonic Setting of Nile Delta	35
2.5.1 Cratonic Sag Stage	38
2.5.2 Rift Stage	39
2.5.3 Passive Margin Stage	40
2.5.4 Syrian Arc Stage	41
2.5.5 Gulf of Suez Rifting and Red Sea Opening Stage	42
2.5.6 Messinian Crisis	42
2.5.7 Pliocene-Pleistocene Delta Progradation	44
2.6 Tectonic and Structural Evolution of Taurt Field	44
2.7 Petroleum System of Taurt Field	45
Chapter 3: Wireline Logging Analysis	
3.1 Introduction	48
3.2 Available Data	50
3.3 Facies Determination Using Log Curves Shape and Description.	52
3.4 Cores Description.	56
3.5 Wireline Log Quality Control.	58
3.6 Petrophysical Evaluation Work Flow.	58
3.6.1 Data Editing	58
3.6.2 Zonation	60
3.6.3 Determination of Formation Temperature	61
3.6.4 Correction of Rm, Rmc and Rmf Resistivities	63
3.6.5 Shale Volume Determination (Vsh)	63
3.6.5.1 Field Well Logs Parameters	64
3.6.5.2 Well Logs Parameters	64
3.6.5.3 Single Curve Shale Indicator "GR Method	65
3.6.5.4 Double Curve Shale Indicators " \emptyset_N and \emptyset_D Method"	65
3.6.6 Determination of Formation Porosity	66
3.6.6.1 Total Porosity (Φ_{T})	66
3.6.6.1.1 Total Porosity From Density Log	66
3.6.6.1.2 Total Porosity From Sonic Log	68
3.6.6.1.3 Total Porosity From Neutron-Density logs	68
3.6.6.1.4 Total Porosity From Neutron-Sonic logs	68

3.6.6.2 Effective Porosity ($\Phi_{\rm eff}$)	69
3.6.6.2.1 Effective Porosity from Density log	69
3.6.6.2.2 Effective Porosity from Sonic Log	69
3.6.6.2.3 Effective Porosity from Neutron-Density Logs	70
3.6.6.2.4 Effective Porosity from Neutron-Sonic Logs	70
3.6.7 Determination of the Formation Water Resistivity (Rw)	70
3.6.7.1 The theory of Pickett's plot	71
3.6.8 Fluid Saturations Determination	75
3.6.8.1 Water Saturations Determination (Sw)	75
3.6.8.2 Hydrocarbon Saturations Determination (Shc)	77
3.7 Hudraulic Flow Unit (HFU)	83
3.7.1 Winland R35 Method	83
3.8 Modular Formation Dynamic Tester (MDT)	85
Chapter 4: Lithology Identification	
4.1 Introduction	88
4.2 Lithological Interpretation Using Cross-Plots	88
4.2.1 Neutron (NBHI) - Density (RHOB) Crossplot	89
4.2.2 Mineral Identification (M-N) Crossplot	93
4.2.3 Matrix Identification (MID) plots	94
4.2.4 Clay minerals identification Crossplot	96
4.2.4.1 Th-K cross Crossplot	96
4.3 Petrophysical Parameters Cut-off Estimation	98
4.4 Litho-Saturation Crossplot	99
4.5 Iso-parametric Mapping of Petrophysical Parameters	100
4.5.1 S10 Iso-Parametric Maps	106
4.5.2 S20 Iso-Parametric Maps	106
4.5.3 S30 Iso-Parametric Maps	107
Chapter 5: 3D Seismic Data Interpretation	
5.1 Introduction	111
5.2 Available Data	112
5.3 Seismic Data Description	113
5.3.1 Acquisition Parameters of The Individual Azimuth	114
5.3.2.Processing Parameters For MAZ Seismic Survey	116
5.4 Quality Control of Seismic Data	117

5.5 Work Flow	119
5.5.1 Well To Seismic Tie	120
5.5.1.1 Time-Depth chart	120
5.5.1.2 Synthetic Seismogram Generation	124
5.5.2 Direct Hydrocarbon Indicator (DHI) of Seismic Data	130
5.5.3 Seismic Data Interpretation	133
5.5.3.1 Seismic Interpretation Technique	134
5.5.4 Seismic Structure Interpretation	136
5.5.4.1 Interpretation of Seismic sections	137
5.5.5 Three Dimensional (3D) Amplitude Auto Tracking	143
5.5.6 Construction and Interpretation of the Seismic Maps	147
5.5.6.1 Time Structural Contour Maps	147
5.5.6.1.1 Three Dimensional (3D) Display of Seismic	152
Interpretation	153
5.5.6.2 Depth Conversion	155
5.5.6.3 Depth Structural Contour Maps	156
5.5.6.4 Thickness Contour Maps	161
5.5.6.4.1 Isochron Maps	161
5.5.6.4.2 Isopach and Isochore Maps	162
Chapter 6: Seismic Attributes	
6.1 Introduction	170
6.2 Attributes Classification	172
6.2.1 Geometrical-Physical Attributes	173
6.2.2 Kinematic-Dynamic Attributes	173
6.2.3 Complex-Trace Attribute	174
6.2.4 General-Specific Attributes	174
6.3 Time-Based Attributes	175
6.4 Amplitude-Based Attributes	177
6.4.1 RMS Amplitude Attribute	178
6.4.2 Maximum Negative Amplitude Attribute	179
6.5 Trace Envelope Attribute	186
6.5.1 Trace Envelope Algorithm	187
6.6 Coherence Attributes Estimation	189
6.6.1 Coherence Attributes Algorithms	191
6.7 Spectral Decomposition Attributes Estimation	197

6.7.1 Physical Concept of Spectral Decomposition	
6.7.2 Technical Description and Workflow of Spectral Decomposition	200
6.7.3 Methodology	206
6.7.3.1 Reconnaissance Tuning Cubes	206
6.7.3.2 Composite Frequency Image (RGB Blending)	207
6.8 Geo-body Extraction	217
Chapter 7: Reservoir Modeling and Reserve	
Estimation	
7.1 Introduction	220
7.2 Categories of Reservoir Modeling	221
7.3 Structural Modeling	223
7.3.1 Fault Modeling	223
7.3.2 Pillar Gridding	224
7.3.3 Making Horizons	227
7.4 Facies Modeling	231
7.4.1 Scale up Facies Log.	233
7.4.2 Mit Ghamr Formation Litho-Facies Description	234
7.5 Petrophysical Modeling	237
7.5.1 Effective Porosity	237
7.5.2 Water Saturation	240
7.6 Fluid Contact Modeling	243
7.7 Hydrocarbon Reserve Estimation	245
Summery and Conclusions	253
References	260
Arabic Summery	273

List of Figures

Figure (1-1):	Location Map of the Study Area (Bb internal report, 2010).	3
Figure (1-2):	Onshore and offshore gas Fields in Nile Delta (after Schlumberger, 1995).	4
Figure (1-3):	Nile Delta Concessions (after EGAS, 2010).	7
Figure (2-1):	Location map of the Nile Delta Basin and it's corresponding six subbasins (BP internal report, 2004).	13
Figure (2-2):	Stratigraphy of the Nile Delta, with the main hydrocarbon reservoirs, seals and source rocks (EGPC, 1994).	15
Figure (2-3):	Stratigraphic model of the Neogene-Quaternary in Nile Delta (EGPC, 1994).	29
Figure (2-4):	Nile Delta major structural trends, after (Abdel Aal et al., 1994).	32
Figure (2-5):	Geological domains of Nile Delta and NE Mediterranean after Abdel Aal et al. (2001). Hydrocarbon fields are shown in red color.	34
Figure (2-6):	Paleogeographic maps of the Nile Delta and surrounding areas from the Triassic to Quaternary after Schandelmeier et al. (1997).	37
Figure (2-7):	Tectonic Relationship Between Nile Delta and Suez Rift, after Eni, (2000).	38
igure (2-8):	Tectonic motions and relations with tectonic events in Mediterranean Sea, Nile Delta, Gulf of Suez and some events in Egypt (El Gamal and El Bosraty, 2008).	39
Figure (2-9):	Interpreted distribution of crustal type and key basement fabric within the East Mediterranean Basin (EMB) (After Longacre et al., 2007).	41
Figure (2-10):	Tectono-stratigraphy column of Nile Delta. The diagram represents onshore to offshore stratigraphy from Western Desert to the deep water Nile Delta (after Dolson etal., 2005).	43
Figure (2-11):	Regional and stratigraphic context of Taurt Field located in northeast Ha'py Field (Dolson et al., 2001). Schematic cross-section through Nile Delta province.	45
Figure (3-1):	Wells distribution base map with 3D trajectory of Taurt Field.	50
Figure (3-2):	General GR response to variation in grain size and depositional environment (Emery, 1996).	54
Figure (3-3):	GR log shape facies of T-01, T-02, T-04 and T-05 wells.	55
Figure (3-4):	Thin section of core (S20) in T-01 well at depth 1210.15 m (Bb internal report, 2010).	56

Figure (3-5):	CBW and K relationship for core data in T-01 and T-02 wells.	57
Figure (3-6):	QC plot showing the degree of washout effect (around red circle) in T-01 well.	59
Figure (3-7):	Zonation and Stratigraphic correlation alnog AB profile.	62
Figure (3-8):	Vsh calculation from GR and ØN and ØD logs for T-02 well.	67
Figure (3-9):	Total porosity calculation from density, sonic, neutron density, neutron sonic for T-01 well.	72
Figure (3-10):	Effective porosity calculation from wireline logs for T-02 versus core data.	73
Figure (3-11):	Pickett's plot relationship for T-02 well.	74
Figure (3-12):	Clean aquifer formation for T-02 well.	74
Figure (3-13):	Formation evolution for sand reservoir units in T-01 well.	78
Figure (3-14):	Formation evolution for sand reservoir units in T-02 well.	79
Figure (3-15):	Formation evolution for sand reservoir units in T-03 well.	80
Figure (3-16):	Formation evolution for sand reservoir units in T-04 well.	81
Figure (3-17):	Formation evolution for sand reservoir units in T-05 well.	82
Figure (3-18):	Porosity – permeability relationship of core data in T-01 well with Winland R35.	84
Figure (3-19):	MDT data analysis for all Taurt wells (T-01, T-02, T-03 and T-04 wells).	87
Figure (4-1):	NBHI - RHOB crossplot for T0-1 well.	90
Figure (4-2):	NBHI - RHOB crossplot for T-02 well.	90
Figure (4-3):	NBHI - RHOB crossplot for T-03 well.	91
Figure (4-4):	NBHI - RHOB crossplot for T-04 well.	92
Figure (4-5):	NBHI - RHOB crossplot for T-05 well.	92
Figure (4-6):	M-N cross plot for T-02 well.	95
Figure (4-7):	(ρma)a - (Δtmat)a crossplot for T-02 well.	95
Figure (4-8):	TH/K crossplot for T-04 well.	97
Figure (4-9):	TH/K crossplot for T-05 well.	97
Figure (4-10):	Litho-saturation crosspolt of sand reservoir units in T-01 well.	101
Figure (4-11):	Litho-saturation crosspolt of sand reservoir units in T-02 well.	102

Figure (4-12):	Litho-saturation crosspolt of sand reservoir units in T-03 well.	103
Figure (4-13):	Litho-saturation crosspolt of sand reservoir units in T-04 well.	104
Figure (4-14):	Litho-saturation crosspolt of sand reservoir units in T-05 well.	105
Figure (4-15):	Iso-parametric maps of Vsh, Φ eff, Sh and net pay thickness for S10 reservoir unit.	108
Figure (4-16):	Iso-parametric maps of Vsh, Φeff, Sh and net pay thickness for S20 reservoir unit.	109
Figure (4-17):	Iso-parametric maps of Vsh, Φeff, Sh and net pay thickness for S30 reservoir unit	110
Figure (5-1):	Location map of seismic lines and available wells of the study area.	113
Figure (5-2):	Processing sequence for Taurt Field, Nile Delta, Egypt (Bb internal report, 2002).	116
Figure (5-3):	X-line 2988 seismic section show seabed polarity.	118
Figure (5-4):	Polarity of Top and Base of S10, S20 and S30 reservoir units across x-line2988 seismic section.	119
Figure (5-5):	Time-Depth chart of T-01 and T-02 wells.	121
Figure (5-6):	(A) X-line 3022 seismic section with, (B) in-line 1337 seismic sections with Top and Base S10, S20 and S30 reservoir units cross T-01 well.	122
Figure (5-7):	(A) X-line 2919 and (B) in-line1366 seismic sections with Top and Base S10, S20 and S30 reservoir units cross T-02 well.	123
Figure (5-8):	(A) T-01 well and seismic data before check-shot correction, (B) T-01 well check-shot correction.	127
Figure (5-9):	T-01 well after check-shot correction.	128
Figure (5-10):	(A) Statistical wavelet extraction, (B) T-01 synthetic seismogram generation.	129
Figure (5-11):	Schematic diagrams for brightspot (AIshale> AIwater> AIgas). Red indicates a decrease in Impedance; blue an increase (after Guo, 2014). AI shale, AI water and AI gas represent acoustic impedance of shale, water sand and gas sand respectively	131
Figure (5-12):	(A) In-line1337 seismic section clarify brightspot and flatspot.	131
Figure (5-13):	Schematic diagram for polarity reversal (Alwater> Alshale> Algas) (after Guo, 2014).	132
Figure (5-14):	X-line 3194 seismic section clarify polarity reversal.	132

Figure (5-15):	Interpreted seismic section; x-line 3024 and TWT structure map of Top S10 picking.	139
Figure (5-16):	Interpreted seismic section; X-line 2961 with TWT structure map of Top S20 and S30 picking.	141
Figure (5-17):	Interpreted seismic section; In-line 1337.	142
Figure (5-18):	Interpreted composite line 1 in WNW-ESE direction.	142
Figure (5-19):	Interpreted composite line in 2 WNW-ESE direction.	143
Figure (5-20):	2D view of amplitude distribution on Top S10 reservoir unit (yellow line is composite seismic section in Figure (5-18)).	144
Figure (5-21):	2D view of amplitude distribution on S10-Base reservoir unit (yellow line is composite seismic section in Figure (5-18)).	145
Figure (5-22):	2D view of amplitude distribution on Top S20 reservoir unit (yellow line is composite seismic section in Figure (5-19)).	145
Figure (5-23):	2D view of amplitude distribution on Base S20 reservoir unit (yellow line is composite seismic section in Figure (5-19)).	146
Figure (5-24):	2D view of amplitude distribution on Top S30 reservoir unit (yellow line is composite seismic section in Figure (5-18)).	146
Figure (5-25):	2D view of amplitude distribution on Base S30 reservoir unit (yellow line is composite seismic section in Figure (5-18)).	147
Figure (5-26):	Time structural contour map on Top S10 reservoir unit.	150
Figure (5-27):	Time structural contour map on Base S10 reservoir unit.	150
Figure (5-28):	Time structural contour map on Top S20 reservoir unit.	151
Figure (5-29):	Time structural contour map on Base S20 reservoir unit.	151
Figure (5-30):	Time structural contour map on Top S30 reservoir unit.	152
Figure (5-31):	Time structural contour map on Base S30 reservoir unit.	153
Figure (5-32):	3D display of faults affected on the study area.	154
Figure (5-33):	3D display of time structural contour map of Top and Base S10, S20 and S30 reservoir units.	154
Figure (5-34):	Time-depth linear relationship for T-01 and T-02 wells showing best fit line.	155
Figure (5-35):	Top S10 depth structural contour map.	158
Figure (5-36):	Base S10 depth structural contour map.	158
Figure (5-37):	Top S20 depth structural contour map.	159

Figure (5-38):	Base S20 depth structural contour map.	159
Figure (5-39):	Top S30 depth structural contour map.	160
Figure (5-40):	Base S30 depth structural contour map.	160
Figure (5-41):	Thickness maps between Top and Base S10; (A) Isochron, (B) Isopach and (C) Isochore maps.	164
Figure (5-42):	Thickness maps between Top and BaseS20; (A) Isochron, (B) Isopach and (C) Isochore maps.	165
Figure (5-43):	Thickness maps between Top and Base S30; (A) Isochron, (B) Isopach and (C) Isopach maps.	166
Figure (5-44):	3D display isochron between Top and Base surface of S10 reservoir unit.	167
Figure (5-45):	3D display isopach between Top and Base surface of S10 reservoir unit.	167
Figure (5-46):	3D display isochron between Top and Base surface of S20 reservoir unit.	168
Figure (5-47):	3D display isopach between Top and Base surface of S20 reservoir unit.	168
Figure (5-48):	3D display isochron between Top and Base surface of S30 reservoir unit.	169
Figure (5-49):	3D display isopach between Top and Base surface of S30 reservoir units.	169
Figure (6-1):	Simple classification for seismic attributes.	175
Figure (6-2):	Isochron map of S10 reservoir unit.	176
Figure (6-3):	Isochron map of S20 reservoir. unit.	176
Figure (6-4):	Isochron map of S30 reservoir unit.	177
Figure (6-5):	RMS theory.	179
Figure (6-6):	represents Maximum Negative amplitude attribute map of full-stack reflectivity cube.	179
Figure (6-7):	Top S10 RMS amplitude attribute map.	181
Figure (6-8):	Top S10 max. negative amplitude attribute map.	181
Figure (6-9):	Top S20 RMS amplitude attribute map.	182
Figure (6-10):	Top S20 max. negative amplitude attribute map.	182
Figure (6-11):	Top S30 RMS amplitude attribute map.	183