

Short circuit current calculation for full converter based wind power plants

By

Abdelazeem Hassan Shehata Atyia

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

Short circuit current calculation for full converter based wind power plants

By **Abdelazeem Hassan Shehata Atyia**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. **Zeinab H. M. Osman** Prof. Dr. **Nabil M. Ayad**

Professor of Power Systems

Electrical Power and Machines

Department, Faculty of

Engineering, Cairo University

Professor

Nuclear F

Egyptian

Authority

Professor at Reactors Department, Nuclear Research Center, Egyptian Atomic Energy

Dr. Amgad Amin El-Deib

Assistant Professor Electrical Power and Machines Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Short circuit current calculation for full converter based wind power plants

By **Abdelazeem Hassan Shehata Atyia**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Zeinab Mohamed Osman,

Thesis Main Advisor

Prof. Dr. Mohamed Salah El-Sobky (jr.),

Internal Examiner

Prof. Dr. **Almoataz Youssef Abdelaziz**, Electrical Power and Machines Department, Ain Shams Faculty of Engineering

External Examiner

Engineer's Name: Abdelazeem Hassan Shehata Atyia

Date of Birth: 4/4/1989 **Nationality:** Egyptain

E-mail: abdelazeem_hassan@yahoo.com

Phone: 01146477198

Address: Zagazig-EL-Sharqia

Registration Date: 1 / 10 / 2012. **Awarding Date:** / 2018. **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Zeinab H. M. Osman

Prof. Dr. Nabil Mohamed Ayad, Egyptian Atomic Energy Authority

Dr. Amgad Amin EL-Deib

Examiners:

Prof. Dr. Almoataz Youssef Abdelaziz Mohammed (External Examiner)

Electrical Power and Machines Department, Ain Shams Faculty of

Engineering

Prof. Mohamed Salah El Sobki (Internal Examiner)

Porf. Dr. Zeinab H. M. Osman (Thesis Main Advisor)

Title of Thesis:

Short circuit current calculation for full converter based wind power plants

Key Words:

Full converter based wind turbines; Short circuit current calculation; Fault ride through; Generic model

Summary:

This thesis presents a new method for calculating steady state short circuit current of full converter based wind generator using generic model, taken into consideration Low Voltage Ride Through requirements and voltage support according to the grid codes. To evaluate the performance of the method, two case studies have been performed. The method has been implemented in Matlab, and the results are compared with that deduced from dynamic simulation using Power World Simulator program that contains the generic model of the full converter based wind power plants the difference in the results is within 1%, which confirms the accuracy of the proposed method.

Insert photo here

Acknowledgment

Praise be to Allah, Lord of the Worlds, who taught me what I did not know. It is my honor to thank my supervisor Prof.Dr. Zeinab H. Osman for her excellent thesis supervision, continuous support, advice to me and her generous treatment as her son. As I thank my supervisor Dr.Amgad El-Deib for his valuable information which helped me in ending this thesis, on a personal level, he fully supported me and continued to encourage me and he was credited after God for accomplishing this thesis, and his valuable advices that help me not only in my thesis, but also in my life. I also thank Dr.Nabil Ayad, Dr Salah EL Morshidy, and Dr. Ayman Azab for their continuous support in my work. I also thank my brothers and friends for their constant encouragement to get a Master degree. I would like to thank my colleagues Eng. Montaser Belah Medhat, Eng.Mohamed Karim, and Dr. Muhammad Mansy for their continuous support. In the end, I would like to thank my beloved mother, who has always supported me and stood beside me in hard times.

Dedication

I dedicate this thesis to my dad, brothers, and friends .

Table of contents

ACKN	OWLEDGEMENTS	i
DEDIC	CATION	ii
TABL	E OF CONTENTS	iii
LIST (OF FIGURES	vii
LIST (OF TABLES	ix
NOME	ENCLATURE	xi
ABST	RACT	xiii
1.1 1.2 1.3 1.4 1.5 1.6	Background Motivation Problem statement Thesis objective Power system simulation tool Thesis organization	1 1 1 2 2 3
2.1 2.2 2.3 2.4 2.5	Introduction Wind turbine types 2.2.1 Fixed-speed wind turbines (Type 1) 2.2.2 Semi variable speed WTs (Type 2) 2.2.3 Doubly fed induction generator (DFIG) (Type 3) 2.2.4 Full converter cased wind turbine (Type 4) Gride code requirements Importance of fault ride through capability LVRT Requirements in National Grid Codes 2.5.1 Denmark 2.5.2 Germany 2.5.3 Spain	4 4 4 5 5 6 7 8 9 10 10 12
	2.5.4 Egyptian grid code requirements	13 15

	2.5.6 USA	16
	2.5.7 Canada	16
2.6		18
2.7	Reactive current injection for voltage support	19
2.8	Comparison between FRT requirements in national grid codes	19
2.9		20
Chapte		21
3.1		21
3.2	<i>v</i> 1	21
3.3		22
3.4	V	23
3.5		24
3.6	Difference between short circuit behavior of synchronous generator and	
	voltage source converter wind turbine generator	24
3.7	Short-circuit analysis methods	25
3.8	The classification of SC calculation methods according to applications	25
	3.8.1 Planning conditions	25
	3.8.2 Operating conditions	26
3.9	Standards for short-circuit calculations	26
3.10	Standard methods for short circuit calculation	26
		27
	<u> </u>	28
Chapte	<i>v</i> 1	2 9
4.1		29
4.2	V-1	29
4.3	Generic models industry groups	30
4.4	1 0	30
4.5	Generic model properties	30
4.6	Wind Generation	30
	4.6.1 Wind power plant topology	30
	4.6.2 Single machine equivalent representation (aggregation of multiple	
	$\mathrm{WTs})$	31
4.7	Generic models for WTs	32
4.8	Generic model parameters	36
	4.8.1 Model validation test	36
	4.8.2 EPRI model validation programs	37
	4.8.3 Parameters of WT type 4 WECC generic model	37
4.9	Summary	38
1.0		00
Chapte	er 5: Integrating wind power plants with nuclear facilities	39
5.1	Introduction	39
5.2	Connecting a Nuclear Power Plant to the Grid	39
5.3	~	40
5.4	Generic Model Data for NPP Generator	40
5.5		43
5.6	Summary	43

Chapte	er 6:	Developed method for steady state fault current calculation	44
6.1	Introd	uction	44
6.2	Needi	ng a new method to compute fault current of VSC WTs	44
6.3	Pre-fai	ult operation of WTs	44
6.4	After f	fault	45
6.5	Develo	oped method for short-circuit calculations	45
	6.5.1	Pre fault load flow calculations	45
	6.5.2	Fault study of type 4 WTG, detailed model	47
	6.5.3	Developed steps for short circuit calculations	48
6.6	Summ	ary	54
Chapte	er 7:	Results and Discussion	56
7.1	Case I	: WECC 6 - Bus system	56
7.2	Dynan	nic simulation results	57
	7.2.1	Injected reactive current from WPP	57
	7.2.2	WT terminal voltage	59
	7.2.3	Voltage at the bus 3	61
	7.2.4	Reactive current contribution by type 4 WTs	63
	7.2.5	Active and reactive fault current contribution by type 4 WTs	65
	7.2.6	Active and reactive WTs converter limits	67
7.3	Applic	eation of developed method and comparison with PWS	68
	7.3.1	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 0 \dots \dots \dots$	68
	7.3.2	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 2 \dots \dots \dots$	70
	7.3.3	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 4 \dots \dots \dots$	71
	7.3.4	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 6 \dots \dots \dots$	72
	7.3.5	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 8 \ldots \ldots \ldots$	72
	7.3.6	Fault at bus 3 with $Z_f = j 0.2$ pu , $k = 10 \ldots \ldots \ldots \ldots$	73
	7.3.7	Fault currents with different values of k	74
7.4	Case I	I: Modified WSCC 9 - Bus system with added aggregated model	75
	7.4.1	Background description	75
	7.4.2	Fault at bus 5 with $Z_f = j 0.1$ pu, and $k = 0 \ldots \ldots \ldots$	76
	7.4.3	Fault at bus 5 with $Z_f = j 0.1$ pu, and $k = 2 \dots \dots \dots$	77
	7.4.4	Fault at bus 5 with $Z_f = j 0.1$ pu, and $k = 4 \dots \dots \dots$	77
	7.4.5	Fault at bus 5 with $Z_f = j 0.1$ pu, and $k = 6 \dots \dots \dots$	78
	7.4.6	Fault at bus 5 with $Z_f = j 0.1$ pu, and $k = 8 \dots \dots \dots$	78
	7.4.7	Fault at bus 5 with $Z_f = j \ 0.1$ pu, and $k = 10 \ldots \ldots$	79
	7.4.8	Fault at bus 8 with $Z_f = j \ 0.1$ pu, and $k = 0 \ \dots \dots \dots$	80
	7.4.9	Fault at bus 8 with $Z_f = j \ 0.1$ pu, and $k = 2 \ \dots \ \dots \ \dots$	80
	7.4.10	Fault at bus 8 with $X_f = j \ 0.1$ pu, and $k = 4 \dots \dots \dots$	81
	7.4.11	Fault at bus 8 with $Z_f = j \ 0.1$ pu, and $k = 6 \dots \dots \dots$	81
	7.4.12		
		j 0.1 and fault at bus 8	81
	7.4.13	Fault at bus 6 with $K=2$, with different values of Z_f	84
7.5		bution of fault current from system generators at different fault lo-	
		5	85
7.6		ary	86
Chapte	er 8:	Conclusion and Future Work	87
-	Conclu		87

8.2 Future Work		88
Appendix A:	WECC 6-Bus system data	93
Appendix B:	IEEE 9-Bus system data	94
Appendix C:	Results of load flow of the WECC 6-Bus system	95

List of Figures

Figure 2.1	Typical Configuration of a Type 1 WTG	5
Figure 2.2	Typical Configuration of a Type 2 WTG	5
Figure 2.3	Typical Configuration of a Type 3 WTG	6
Figure 2.4	Typical Configuration of a Type 4 WTG	7
Figure 2.5	Voltage dips during a three-phase short circuit [11]	9
Figure 2.6	Voltage profile for simulation of symmetric three-phase faults [12] .	10
Figure 2.7	Voltage limit values for disconnection of type 2 GUs during grid fault	11
Figure 2.8	Voltage support requirement from E.On in the event of grid faults .	12
Figure 2.9	Low voltage ride through capability for wind turbines in the Spanish	
transm	aission grid code	13
Figure 2.10	Reactive current injection requirements according to the Spanish	
grid co	des	13
Figure 2.11	Fault ride through profile for a Wind Farm	14
Figure 2.12	Temporary voltage drops due to a non-successful auto-reclosure	14
Figure 2.13	Current injection during the fault	15
Figure 2.14	Voltage profile for fault ride-through capability in italy	16
Figure 2.15	Minimum response of the wind power plant required to extra low	
voltage	e in USA	16
$Figure\ 2.16$	FRT capability from Hydro-Quebec for wind turbine generators	
during	three phase short circuit	17
Figure 2.17	Fault ride through requirements from AESO-Alberta	18
Figure 2.18	AWEA Low Voltage Ride Through capability until end 2006	18
Figure 2.19	Review of fault ride through requirements for wind power in Euro-	
pean g	rid codes	20
Figure 3.1	Different types of short circuits	22
Figure 3.2	Transmission line representation model	22
Figure 3.3	Waveform of a fault current on a transmission line	23
Figure 3.4	Symmetrical fault armature current of synchronous machine	24
Figure 3.5	Linear generator model for short circuit studies	24
Figure 3.6	Different options of fault calculation using Power Word Simulator	
progra	m	27
Figure 3.7		28
Figure 4.1	Wind power plant topology	31
Figure 4.2	Single-machine equivalent power flow representation	32
Figure 4.3	The VSC generator wind turbine model	32
Figure 4.4	Renewable energy generator/converter model A $(regc_a)$	33
Figure 4.5	Options for the reactive power control path in the reec_a model [41]	35
Figure 4.6	Plant active power controller model	36

Figure 4.7		36
Figure 4.8	Type 4 data entry parameter menu	37
Figure 5.1	Electrical connections of the NPP to two substations [44] \dots	40
Figure 6.1	Representation of wind farms for steady-state power flow analysis .	45
Figure 6.2	Power system representation	46
Figure 6.3	Power system representation with a fault at bus f	48
Figure 6.4	Injected reactive current for grid voltage support according to the	
	n code	52
Figure 6.5	Overall generic model structure for type 4 WTG [40]	53
Figure 6.6	The alternative generator/converter model [40]	54
Figure 6.7	Flow chart of developed method	55
Figure 7.1		57
Figure 7.2	·	58
Figure 7.3	Injected reactive current for k=2	59
Figure 7.4		60
Figure 7.5		61
Figure 7.6		62
Figure 7.7		63
Figure 7.8		64
Figure 7.9		65
_		66
_		67
_		68
_	Percentage errors of SSPWS and developed method compared with	
	·	69
_	Fault currents of wind turbine and synchronous generator at differ-	
	, , ,	75
	The modified WSCC 9-bus system with added aggregated model	76
_	Fault currents of wind turbine, synchronous generator at bus one	
	uclear power plant at different values of k and $Z_f = j 0.1 pu$ at bus 5	80
_	Percentage errors of steady state PWS and developed method com-	
-	with dynamic PWS results for 9 - Bus system	82
_	The comparison between the error of the developed method and the	
	state PWS method for I_{SG1}	83
_	The comparison between the error of the developed method and the	
	state PWS method for I_{NPP}	84
	I_{sorc} , I_{SG1} , and I_{NPP} at bus one and Nuclear power plant at different	
buses f	for $Z_f = i 0.1 pu$, $k = 2 \dots \dots \dots \dots \dots \dots$	86

List of Tables

Table 2.1 Summary of fault ride through requirements for wind turbines in various national grid codes	19
Table 4.1 Reactive power control options	34
Table 5.1 Parameters of the IEEE Type1 Excitation system of the NPP Table 5.2 Parameters of the TGOV1 steam turbine governor of the NPP Table 5.3 Parameters of the GENROU Round Rotor Generator of the NPP	41 41 42
Table 7.1 Dynamic power world simulator and developed method results Table 7.2 Developed method and steady state power world simulator results . Table 7.3 Current of wind turbine and SG at $k=0$ and $Z_f=j0.2pu$ Table 7.4 Current of wind turbine and SG at $k=0$ and $Z_f=j0.2pu$, calculated from SSPWS and Developed method	69 69 70
Table 7.5 Voltage magnitude and angle at each bus at $k=2$ and $Z_f=j0.2pu$	70
Table 7.6 Current of wind turbine and SG at $k = 2$ and $Z_f = j 0.2 pu$	71
Table 7.7 Voltage magnitude and angle at each bus at $k = 4$ and $Z_f = j 0.2 pu$	71
Table 7.8 Current of wind turbine and SG at $k = 4$ and $Z_f = j 0.2 pu$	71
Table 7.9 Voltage magnitude and angle at each bus at $k = 6$ and $Z_f = j 0.2 pu$	72
Table 7.10 Current of wind turbine and SG at $k = 6$ and $Z_f = j 0.2 pu$	72
Table 7.11 Voltage magnitude and angle at each bus at $k = 8$ and $Z_f = j 0.2 pu$	73
Table 7.12 Current of wind turbine and SG at $k = 8$ and $Z_f = j 0.2 pu$	73
Table 7.13 Voltage magnitude and angle at each bus at $k = 10$ and $Z_f = j 0.2 pc$	ι 73
Table 7.14 current of wind turbine and SG at $k = 10$ and $Z_f = j 0.2 pu$	74
Table 7.15 Fault currents of wind turbine and synchronous generator at different	
values of k and $Z_f = j 0.2 pu$	74
Table 7.16 Voltage magnitude and angle at buses at $k = 0$ and $Z_f = j 0.1 pu$	
and fault at bus 5	76
Table 7.17 Current of wind turbine and SGs at $k=0$ and $Z_f=j0.1pu$	76
Table 7.18 Voltage magnitude and angle at buses at $k = 2$ and $Z_f = j 0.1 pu$,	
and fault at bus 5	77
Table 7.19 Current of wind turbine and SGs at $k = 2$ and $Z_f = j 0.1 pu$, and	
fault at bus 5	77
Table 7.20 Voltage magnitude, and angle at buses at $k = 4$, and $Z_f = j 0.1 pu$	
and fault at bus 5	78
Table 7.21 Current of wind turbine and SGs at $k = 4$, and $Z_f = j \ 0.1 \ pu$	78
Table 7.22 Current of wind turbine and SGs at $k=6$ and $Z_f=j0.1pu$	78
Table 7.23 Current of wind turbine and SGs at $k = 8$, and $Z_f = j 0.1 pu$	79
Table 7.24 Current of wind turbine, and SGs at $k=10$ and $Z_f=j0.1pu$	79
Table 7.25 Fault currents of wind turbine ,synchronous generator at bus one	
and Nuclear power plant at different values of k and $Z_i = i 0.1 m$	79

Table 7.26 Current of wind turbine and SGs at $k = 0$ and $Z_f = j 0.1 pu$, and	
fault at bus 8	80
Table 7.27 Iq_{inj} , I_{sorcc} , I_{SG1} , and I_{NPP} at $k=2$ and $Z_f=j\ 0.1\ pu$, and fault at	
bus 8	81
Table 7.28 Current of wind turbine and SGs at $k = 4$ and $Z_f = j 0.1 pu$, and	
fault at bus 8	81
Table 7.29 Current of wind turbine and SGs at $k=6$ and $Z_f=j0.1pu$	81
Table 7.30 Wind Turbine fault currents at different values of k and $Z_f = j \ 0.1 \ pu$	82
Table 7.31 Synchronous generator current at bus 1 at different values of k and	റെ
$Z_f = j0.1pu$	83
and $Z_f = j 0.1 pu$	84
Table 7.33 Injected reactive current by WPP at different values of Z_f and $K=2$	85
Table 7.34 Synchronous generator current at bus 1 fault current at different	
values of Z_f and $K=2$	85
Table 7.35 I_{NPP} at different values of Z_f and $K=2$	85
Table 7.36 Fault current contribution by WPP at different values of Z_f and $K=2$	85
Table 7.37 I_{sorc} , I_{SG1} , and I_{NPP} at $k=2$ and $Z_f=j0.1pu$ at different bus	
locations	85
Table A.1 Line data for 6 Bus system	93
Table A.2 Bus data for 6 Bus system $(S_{base} = 100MVA) \dots \dots \dots$	93
J (wasc)	
Table B.1 Line data for for 9 Bus System with WPP aggregated model	94
Table B.2 Bus data for 9 Bus System with WPP aggregated model ($S_{base} =$	
100MVA)	94
Table C.1 Pre-fault Voltage magnitude and angle at each bus	95
Table C.2 Pre-fault wind turbine currents	95

Nomenclature

ANSI American National Standards Institute

DFIG Doubly Fed Induction Generator

DVS Dynamic Voltage Sustain

E.ON European holding company, Germany

ETRR1 The first nuclear reactor in Egypt

ETRR2 The second nuclear reactor in Egypt

FCB Full Converter Based

FRC Full Rated Converter

FRT Fault Ride Through

GU Generating Unit

IB Required reactive current change during fault

IBDG Inverter Based Distributed Generation

IEC International Electrotechnical Commission

LVRT Low Voltage Ride Through

NPP Nuclear Power Plant

PCC Point of Common Coupling

PMSG Permanent Magnet Synchronous Generator

POC Point of Connection

POI Point of interconnection

pu per unit

REMV Renewable Energy Model Validation

SAVNW Case comprises a simple power system network. It shows how to build a case in PSS/E and the kind of data input required to study power flow, fault analysis and dynamic behavior of power system network.