The role of the glutathione and its related enzymes in the susceptibility of the Egyptian Down syndrome children to leukemia

Thesis Submitted for the award of the Ph. Degree in Biochemistry

Presented By

Rasha Awni Mohamed Guneidy

M.Sc. in Biochemistry, 1998

Supervised by

Prof. Dr. Tahany M. Maharem Prof. Dr. Ragaa Reda Hamed

Professor of Biochemistry Biochemistry Department Faculty of Science Ain - Shams University Professor of Biochemistry Molecular Biology Department Genetic Engineering Division National Research Centre

Prof. Dr. Nagwa Abdel-Meguid Mohamed

Professor of Human Genetics Head of Children with Special Needs Department National Research Centre

Dr. Gilane M. Sabry

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science Ain - Shams University

To
Biochemistry Department
Faculty of Science
Ain - Shams University
2007

The role of the glutathione and its related enzymes in the susceptibility of the Egyptian Down syndrome children to leukemia

Board of Scientific Supervision

Prof. Dr. Tahany M. Maharem

Professor of Biochemistry, Biochemistry Department Faculty of Science, Ain-Shams University

Prof. Dr. Ragaa Reda Hamed

Professor of Biochemistry, Molecular Biology Department Genetic Engineering Division, National Research Centre

Prof. Dr. Nagwa Abdel- Meguid Mohamed

Professor of Human Genetics, Head of Children with Special Needs Department, Medicinal Research Division National Research Centre

Dr. Gilane M. Sabry

Assistant Professor of Biochemistry, Biochemistry Department Faculty of Science, Ain-Shams University

Acknowledgement

I would like to express my sincere thanks to *Prof. Dr. Tahany M. Maharem*, Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain-Shams University, for her limitless help, close supervision, continuous guidance, constructive criticism and significant contribution to the manuscript writing.

I wish to express my sincere appreciation to *Prof. Dr. Ragaa Reda Hamed*, Professor of Biochemistry, Molecular Biology Department, National Research Centre, for her close supervision, kind co-operation, support and encouragement. Her helpful and unlimited support and for all the valuable things I learned from her. It was a great honor to work under her supervision.

I would like to express my deep thanks to *Prof. Dr. Nagwa Abdel-Meguid Mohamed*, Prof. of Human Genetics, Head of Children with Special Needs Department, Medicinal Research Division, National Research Centre, for her supervision, great effort and help in collecting samples, follow up and diagnosis of the cases.

I am also indebted and extend my sincere thanks to *Dr*. *Gilane M. Sabry*, Assistant Prof. of Biochemistry, Biochemistry

Department, Faculty of Science, Ain-Shams University, for her support and guidance throughout the work.

I am greatly indebted to *Dr. Abdel-Monem Abdalla*, Assistant Prof. of Biochemistry, Molecular Biology Department, National Research Centre, for his valuable assistance in the practical part and his concrete help and cooperation throughout this work.

Also, I would like to express my deepest gratitude to the Down syndrome patients in the Children with Special Needs, clinic of National Research Centre, Cairo, Egypt, leukemia patients in the Out patient medical clinic of Ain-Shams University Hospital and the National Cancer Institute, Cairo University.

Deepest gratitude is indebted to all my colleagues in Molecular Biology Department, National Research Centre, for their great help and support during my work.

Deepest gratitude is indebted to my family for their help and continuous encouragement.

Abstract

Rasha Awni Mohamed Guneidy, The role of the glutathione and its related enzymes in the susceptibility of the Egyptian Down syndrome children to leukemia.

Ph. D. Thesis: Biochemistry Department, Faculty of Science, Ain- Shams University.

This study was concerned with the examination of the level of the antioxidant enzymes, total glutathione (GSH) concentration and its related enzymes in the erythrocytes hemolysate of Down syndrome (DS), leukemia and DS-leukemia children as well as the normal children in order to investigate the possible variations as a function of DS and leukemia to obtain a comprehensive view of the leukemia patient antioxidant machinery in the Egyptian DS children. It was also concerned with the examination of the relationship between genetic polymorphism in GSTM1 and GSTT1 as well as characterization of the purified GST enzyme from normal and DS erythrocytes to illustrate the role of this enzyme in protection of the cell.

Blood samples were collected from the four groups for separation of leukocytes and erythrocytes.

All the levels of the tested enzymes in erythrocytes hemolysate of DS group were increased with the exception of GST and GSH concentration, while, their levels were decreased, except SOD in leukemia and DS-leukemia groups, compared with their levels in normal group.

Genomic DNA was extracted from leukocytes for determination of the frequencies of the GSTT1 and GSTM1 null genotypes. Genotype analysis of GSTT1 and GSTM1 indicated that, the incidences of GSTT1 null genotypes were 70% in DS patients compared to 90% in control group and 80% was the incidences of GSTM1 null genotypes in the two groups.

Polyacrylamide gel electrophoresis for the purified normal and DS erythrocytes GST indicated the presence of three bands with three different molecular weights, 35.5 kDa, 28 kDa and 23.2 kDa, respectively. The effect of freezing and thawing, storage time of freezing and GSH concentration on the stability of the purified enzyme from normal and DS erythrocytes indicated the sensitivity of normal GST enzyme compared to DS GST. On kinetic basis, DS GST differs from normal GST regarding Km, pH, activation energy, substrate specificity and the degree of inhibition. Also, with regard to stability, the individuals with lower overall GST activity and slight differences in some kinetic characters are at greater risk from xenobiotic contamination as compared to those with higher overall GST activity observed in normal individuals.

Key words: Down syndrome, antioxidants, oxidative stress, glutathione, leukemia, glutathione S-transferase, polymorphism.

Aim of work

To investigate the possible variations as a function of DS and leukemia to obtain a comprehensive view of the leukemia patient antioxidant machinery in the Egyptian DS children, this study was concerned with:

- 1- Examination of the level of the antioxidant enzymes, total glutathione (GSH) concentration and its related enzymes in the erythrocytes hemolysate of DS, leukemia and DS-leukemia children as well as the normal children.
- 2- Examination of the relationship between genetic polymorphism in GSTM1 and GSTT1 and the increased susceptibility to leukemia.
- 3- Characterization of the purified GST enzyme from normal and DS erythrocytes, illustrating the role of this enzyme in protection of the cell.

List of Contents

	Page
Abstract	I
List of Figures	III
List of Tables	VIII
List of abbreviations	XI
Aim of work	XIII
Introduction	1
Down syndrome	1
Superoxide dismutase	10
Glutathione peroxidase	12
Catalase	14
Glutathione reductase	18
Glucose-6-phosphate dehydrogenase	20
Glutathione	21
Glutathione S-transferase	24
Glutathione S-transferase polymorphism	30
Leukemia	33
Subjects and Methods	37
Subjects	37
Chemicals	39
Buffers	39
Methods	39
I- Preparation of blood samples	39
II- Biochemical analyses	40
1- Hemoglobin determination (Hb)	40
2- Protein determination	40

3- Glutathione determination	41
4- Enzyme assays	44
a- Superoxide dismutase	44
b- Glutathione peroxidase	45
c- Catalase	47
d- Glutathione reductase	47
e- Glucose-6-phosphate dehydrogenase	48
f- Glutathione S-transferase	49
- Molecular studies	
1- DNA Extraction	52
2- Polymerase chain reaction technique (PCR)	52
V- Purification of normal and DS erythrocytes GST	
using GSH-Sepharose column chromatography	57
V- Gel electrophoresis	
1- Native polyacrylamide gel electrophoresis.	59
2-Sodium dodecyl sulfate polyacrylamide gel	
electrophoresis (SDS-PAGE)	61
V - Statistical analysis	66
Results	
I-The catalytic activity of the erythrocyte antioxidant	
enzymes in DS, leukemia, DS-leukemia and control	
groups	69
- GST genotypes	77
- Chromatographic behavior of erythrocyte GST on	
GSH- Sepharose affinity column	86
V -Purification of GST from erythrocytes hemolysate	
of normal and DS children by GSH-Sepharose	

affinity column	86
V- Stability studies	91
V - Polyacrylamide gel electrophoresis	94
V -Characterization of the purified normal and DS	
erythrocytes GST	97
Discussion	119
Summary	161
References	168
Arabic Summary	
Arabic Abstract	

List of Abbreviations

AD : Alzheimer disease

ALL : Acute lymphoblastic leukemia

AML : Acute myeloid leukemia

CAT : Catalase

CDNB : 1-chloro-2, 4- dinitrobenzene

CBB : Coomassie brilliant blue

DTT : Dithiotheritol

DS : Down syndrome

EDTA : Ethylene diaminetetraacetic acid

G-6-PDH: Glucose-6-phosphate dehydrogenase

GPx : Glutathione peroxidase

GR : Glutathione reductase

GSH : Reduced glutathione

GSSG : Glutathione disulfide (oxidized form)

GST : Glutathione S- transferase

GSTM1: Glutathione S- transferase class mu

GSTT1 : Glutathione S- transferase class theta

Hb : Hemoglobin

HIV : Human immunodeficiency virus

IQ : Intelligence quotient

NADP⁺ : Nicotinamide adeninedinucleotide phosphate

(Oxidized form)

NADPH: Nicotinamide adeninedinucleotide phosphate

(Reduced form)

 $\mathbf{O_2}^{\bullet}$: Superoxide radicals

OH : Hydroxyl radical

PAGE: Polyacylamide gel electrophoresis

PCR : Polymerase chain reaction technique

ROS : Reactive oxygen species

SDS : Sodium dodecyl sulphate

SE : Standard error

SOD : Superoxide dismutase

List of Figures

Fig. (No.	.)	Page
Fig. (1):	Trisomy 21 classical karyotype	3
Fig. (2):	Trisomy 21 non-disjunction	4
Fig. (3):	Generation and disposal of superoxide and	
	hydrogen peroxide	11
Fig. (4):	Synthesis of glutathione	24
Fig. (5):	Standard curve of protein	42
Fig. (6):	Standard curve of glutathione	44
Fig. (7):	Calibration curve for molecular weight determination	
	using SDS-polyacrylamide gel electrophoresis	65
Fig. (8):	The catalytic activities of antioxidant enzymes and	
	GSH concentration in erythrocytes hemolysate of	
	DS, leukemia and DS-leukemia groups represented	
	as percent changes from the values of the control	
	group	74
Fig. (9):	The catalytic activities of antioxidant enzymes and	
	glutathione concentration in erythrocytes	
	hemolysate of DS-leukemia group represented as	
	percent changes from the values of the DS group	75

in
oup
the
76
and
79
type
80
type
81
type
mia
82
ype
ype
уре ₆ 83
ype 83 type 84
ype 83