

Compact Microstrip Power Dividers

A Thesis
Submitted in partial fulfillment of the requirement for the degree of **Master**of Science in Electrical Engineering

Submitted by

Shimaa Ali Mohammed Beeh Mohassieb

Electronics and Communications Department Faculty of Engineering - Ain Shams University

Supervised by

Prof. Dr. Esmat Abd El-Fattah Abdallah

Professor - Microstrip Department Electronics Research Institute

Prof. Dr. Hadia Mohammed El-Henawy

Dean - Faculty of Engineering Ain Shams University

Dr. Ibrahim Mohammed Barssem

Electrical Engineering Department Akhbar El-Yom Academy

Cairo 201.

Examiners Committee

Name: Shimaa Ali Mohammed Beeh Mohassieb

Thesis: Compact Microstrip Power Dividers

Degree: Master of Science in Electrical Engineering (Electronics and Communications Engineering)

Title, Name and Affiliation

Signature

1. Prof. Dr. Ibrahim Ahmed Salem

Former Director – Technical Military College

2. Prof. Dr. Magdy Mahmoud Ibrahim

Electronics and Communication Department
Faculty of Engineering - Ain Shams University

3. Prof. Dr. Esmat Abd El-Fattah Abdallah

Microstrip Department – Electronics Research Institute

4. Prof. Dr. Hadia Mohamed El-Henawy

Dean of Faculty of Engineering – Ain Shams University

Date: / /

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the

degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the

Department of Electronics and Communications Engineering, Ain Shams

University.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institute.

Name: Shimaa Ali Mohammed Beeh Mohassieb

Signature:

جامعة عين شمس كلية الهندسة قسم هندسة الإلكترونيات والإتصالات الكهربية

اسم الباحثة: شيماء علي محمد بيه محسب طالبة ماجستير بقسم الإلكترونيات والإتصالات كلية الهندسة - جامعة عين شمس

عنوان الرسالة: مقسمات القدرة الكهربية المدمجة باستخدام الخطوط الشريطية

اسم الدرجة: ماجستير الهندسة الكهربية (هندسة الإلكترونيات والإتصالات)

لجنة الفحص و الحكم: التوقيع

الاسم: أ. د/ إبراهيم أحمد سالم (مناقشا)

الوظيفة: مدير الكلية الفنية العسكرية سابقا

الاسم: أ. د/ مجدي محمود إبراهيم (مناقشا)

الوظيفة : أستاذ بكلية الهندسة - جامعة عين شمس

الاسم: أ. د/ عصمت عبد الفتاح عبد الله (عن لجنة الإشراف)

الوظيفة : أستاذ بمعهد بحوث الإلكترونيات

الاسم: أ. د/ هادية محمد الحناوي (عن لجنة الإشراف)

الوظيفة : عميد كلية الهندسة - جامعة عين شمس

تحريرا في / / م

رسالــــة ماجستيــــر

اسم الباحثة: شيماء علي محمد بيه محسب قسم هندسة الإلكترونيات والإتصالات كلية الهندسة - جامعة عين شمس

عنوان الرسالة: مقسمات القدرة الكهربية المدمجة بإستخدام الخطوط الشريطية

اسم الدرجة: ماجستير الهندسة الكهربية (هندسة الإلكترونيات والإتصالات)

لجنة الإشراف

١ ـ أ.د./ عصمت عبد الفتاح عبد الله

أستاذ بقسم الدوائر الشريطية - معهد بحوث الإلكترونيات

٢ - أ.د./ هادية محمد الحناوى

عميد كلية الهندسة - جامعة عين شمس

٣- د./ إبراهيم محمد برسيم

قسم الهندسة الكهربية - أكاديمية أخبار اليوم

الدراسات العليا

إجيزت الرسالة بتاريخ / /٢٠١٠م

ختم الإجازة

موافقة مجلس الجامعة / ٢٠١٠م

موافقة مجلس الكلية / /۲۰۱۰م

جامعة عين شمس كلية الهندسة قسم هنسة الإلكترونيات والإتصالات الكهربية

مقسمات القدرة الكهربية المدمجة بإستخدام الخطوط الشريطية

رسالة ماجستير مقدمة من

المهندسة/ شريماء على محمد بيه محسب قسم هندسة الإلكترونيات والإتصالات

نىسىم ھەنسە- ئۆنكىرونىسىك ۋ ئۆنكىسى دى كلىسة الهندسىة – جامعىة عيىن شمىس

تحت إشراف

أ.د. / عصمت عبد الفتاح عبد الله أستاذ بقسم الدوائر الشريطية معهد بحوث الإلكترونيات

أ.د. / هادية محمد الحناوى عميد كليــة الهندســة ـ جامعــة عيــن شمــس

د. / إبراهيم محمد برسيم قسم الهندسة الكهربية - أكاديمية أخبار اليوم

القاهرة ٢٠١٠

Publication

[1] S. A. Mohassieb, I. M. Barseem, E. A.-F. Abdallah, and H. M. El-Hennawy, "A Compact Microstrip Power Divider Using Periodic DGS and HIOS," Accepted in Progress In Electromagnetics Research Symposium, PIERS 2010, 22-26 March 2010.

ACKNOWLEDGEMENT

All gratitude is due to "ALLAH" who guides me to bring forth to light this thesis.

I would like to thank many people for their help and encouragement in completing my thesis, but my foremost appreciation goes to my supervisor Prof. Dr. Esmat A. Abdallah, Former President of Electronics Research Institute. She guided me in every way she could to complete the thesis. Without her encouragement, the thesis could not reach to this level.

Thanks are also due to Prof. Hadia El-Hennawy, Dean of the Faculty of Engineering, Ain Shams University, for her understanding, patience, encouragement, besides, overcoming any obstacles that might interfere with my work.

Also my deepest gratitude and sincerest thanks to Dr. Ibrahim Barssem for his supervision, fruitful guidance through the course of the work, encouragement, endless help and many illuminating discussions.

I would like to thank Eng. Asmaa Elkadi in Microstrip Department, Electronics Research Institute, for her great assistance during fabrications and measurements.

Last, but not least thanks are also due to my family, father, mother and sisters for the love and support that they have given me during their life time.

Abstract

Power dividers may be classified into many categories such as directional couplers, hybrid junctions, multi-stage multi-way power dividers, sector power dividers, Wilkinson power dividers, etc. This thesis is mainly concerned with the branch-line coupler which is one type of hybrid junctions. These components are used for wide range of applications such as power division, power combining, signal mixing and as a feeding network in various antenna systems.

The conventional branch-line coupler (BLC) consists of four quarter-wavelength transmission lines of loop structure. It has the property that when all ports are matched, the power entering from one port will be divided into other two ports and the fourth port is isolated. However, the conventional branch-line coupler has many disadvantages such as occupying huge area when it is fabricated on a thin substrate, or under the MIC or MMIC technology. It also suffers narrow bandwidth and the existence of higher order modes. One of the problems that are related to the BLC is that when loose coupling is required for example -10 dB coupling, the width of the microstrip line will be very small which complicates the fabrication process and reduces the power handling capability. Many techniques are used to reduce the size of the hybrid junction and to get rid of other limitation such as using artificial transmission lines, using space-filling fractal curves, using quasi-lumped element approach, using vertically installed planar couplers, using folded line, using meandering and multi-meandering, using defected ground structures and photonic bandgap structures. In this thesis, the methods of low and high impedance open stubs and the method of defected ground structures are adopted to miniaturize the branchline coupler, suppress the higher order modes and increase the power handling capability as compared to the conventional coupler.

Miniaturized BLCs are designed, simulated and fabricated using FR4 substrate with dielectric constant 4.6, dielectric substrate height 1.6 mm and loss tangent of 0.02. These BLCs operate at 2.4 GHz. First low and high impedance open stubs are used to miniaturize the conventional BLC using the T, π and combinational models. The proposed design is reduced by more than 69% compared to the conventional design. The second step was to use DGS underneath the BLC. The proposed design is capable to achieve any dividing ratio without reducing the width of the line, which means that the power handling capability is not reduced. In addition, suppression of higher order modes is achieved and more than 18% reduction in size as compared to the conventional shape is obtained. As a final step, the two techniques are combined together and a third BLC is proposed. Good agreement is found between experimental and simulated results using the software package Zeland IE3D.

Key words: Power divider, branch-line coupler, high-impedance open stub, defected ground structure, miniaturization, suppression, and power handling capability.

Table of Contents

	Pages
Acknowledgment	п
Abstract	III
Table of contents	v
List of Tables	XI
List of Figures	XIII
List of Symbols	XXI
List of Abbreviations	XXII
Chapter 1: Introduction	1
1.1 Overview	1
1.2 Definitions	1
1.3 Hybrid Junctions	2
1.4 Frequency Bands	2
1.4.1 Applications	3
1.5 FR4 Substrate	4
1.6 Applications of Microwave Power Dividers	5
1.6.1 In Solid-State Power Amplifier	5
1.6.2 In Beam Forming Network (BFN)	6
1.7 Motivation	7
1.8 Objectives	7
1.9 Achievements	8
1.10 The Ready-made Software Package Zeland IE3D	8
1.11 Thesis Organization	10
Chapter 2: Review of Hybrids and Power Dividers	11

2.1 Introduction	11
2.2 T-Junctions	13
2.2.1 Compensated Equal-Power Divider	14
2.2.2 Compensated Unequal-Power Divider	14
2.2.2.1 Special Case of Compensated Unequal-Power Divider	15
2.3 Wilkinson Power Divider/Combiner	15
2.3.1 Another form of the two-way Wilkinson power dividers/combiners	16
2.3.2 Unequal Wilkinson power dividers/combiners	17
2.3.3 Several Schemes in Wilkinson Power Divider	18
2.3.3.1 Multi-way Wilkinson Power Divider	18
2.3.3.2 Broadband Asymmetrical Multi-section Wilkinson Power Divider	18
2.3.3.3 Novel Approach of Dual-band Wilkinson Power Divider	19
2.3.3.4 Quad-band Wilkinson Power Divider	20
2.4 Hybrid-Line Couplers	21
2.4.1 Directional Couplers	21
2.4.1.1 Main Parameters of Directional Couplers	22
2.4.1.2 Types of Directional Couplers	23
2.4.1.2.1 Multisection Directional Couplers	23
2.4.1.2.2 Tapered Line Directional Couplers	24
2.4.1.2.3 Tandem Directional Couplers	24
2.4.1.2.4 Coupled-line Coupler with Reentrant Structure	25
2.4.2 Lange Couplers	25
2.4.2.1 The Unfolded Lange Couplers	26
2.4.2.2 Lange Coupler with Inductively Compensated Parallel Coupled Line	es 27
2.4.3 Branch-line Coupler (90° hybrid couplers)	27

2.4.3.1 New Approachs in Branch-line Hybrids	28
2.4.3.1.1 Multipassband BLCs with Open Stubs	28
2.4.3.1.2 Branch-line Couplers with Coupled Line Branches	29
2.4.3.1.3 A Class of Branch-line Power Divider	30
2.4.3.1.4 Ultra-wideband Three-way Arbitrary Power Dividers	31
2.4.4 Rate-race Coupler (Ring Couplers)	31
2.4.4.1New Approachs in the Ring Hybrids	33
2.4.4.1.1 Four-port Double-ring Coupler for Crossover Application	33
2.4.4.1.2 Wideband Multisection 180° Hybrid Rings Using VIP Coupler	s 34
2.4.4.1.3 Equal and Unequal Hybrid Ring Coupler	35
Chapter 3: Techniques of Size Reduction	36
3.1 Introduction	36
3.2 Compact Rate-Race Hybrid Coupler Using Meander Space-Filling Curve	36
3.3 Reduced-Size Branch-Line and Rat-Race Hybrids for Uniplanar MMIC's	37
3.3.1 A Wide-Band Lumped-Element 3-dB Quadrature Coupler	38
3.3.2 Compact Planar Microstrip Branch-Line Couplers Using the Quasi-Lumped	
Elements T- Shaped Structure Approach	38
3.3.3 Lumped-Element Equivalent Circuit Models for Distributed Microwave Directi	onal
Couplers	40
3.4 A Novel Microstrip Ring Hybrid Incorporating a PBG Cell	41
3.5 Compact Microstrip BLC Using Discontinuous Microstrip Lines	41
3.6 Compact Folded Line Rat-Race Hybrid Couplers	42
3.7 Compact Microstrip Branch-Line and Rate-Race Couplers Using ATLs	43
3.7.1 A New Planar ATL and its Applications to Miniaturized Hybrid Couplers	44
3.8 Compact Hybrids Using Fractal Techniques	45
3.8.1 Compact Hybrid Couplers Using Space-Filling Fractal Curves	45

3.8.2 Novel Miniaturized Fractal-Shaped Branch-Line Couplers	47
3.9 Size Reduction Using Defected Ground Structures	47
3.9.1 Size Reduction and Harmonic Suppression of Rat-Race Hybrid Coupler Using	
Defected Ground Structure	47
3.9.2 Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band	
Rejection by Asymmetric DGS	49
3.10 Hybrid Size Reduction Using stubs	49
3.10.1 Reduced Branch-Line Coupler with Two-Step Stubs	49
3.10.2 Realization of Ultra-Compact Planar Microstrip Branch-Line Couplers with	
High -Impedance Open Stubs	50
3.11 Miniaturized Planar 90° Hybrid Coupler with Unchanged Bandwidth Using Single	
Characteristic Impedance Line	51
3.12 Compact Wide-Band Branch-Line Hybrids	53
Chapter 4: Compact Microstrip Branch-line coupler Using Open Stubs with Low an	ıd
High Impedances	54
4.1 Introduction	54
4.2 Design of Conventional Branch-Line Coupler (BLC)	55
4.3 Analysis of Equivalent Quarter-Wavelength Transmission Line	57
4.4 Size Reduction of Branch-Line Coupler (BLC) Using Open-Stubs	60
4.4.1 Single-Stub Tuning	60
4.4.2 Compact branch-line coupler	61
4.5 Analysis and Design of Compact Branch-Line Couplers	71
4.5.1 T-model with Low – Impedance Approach	72
4.5.2 T-model with High – Impedance Approach	77
$4.5.3 \pi$ –model with Low – Impedance Approach	80
$4.5.4 \pi$ –model with High – Impedance Approach	83

4.5.5 Combinational-model with Low – Impedance Approach	86
4.5.6 Combinational-model with High – Impedance Approach	89
4.6 Fabrication and Measurements of Compact Branch-Line Coupler	93
4.6.1 Conclusion	96
4.7 Comparison between all models	97
Chapter 5: Compact Branch-line Coupler Using Defected Ground Structure.	99
5.1 Introduction	99
5.2 Study of Different DGS Slots Configurations	100
5.2.1 DGS Element Characteristics	101
5.2.2 Applications of the DGS	103
5.3 Design of Quarter-wave Transmission Lines with DGS for -10 dB BLC	103
5.3.1 Rectangular-Shape	105
5.3.1.1Single Defect	105
5.3.1.2 Double Defect	106
5.3.1.3 Triple Defect	107
5.3.2 Dumbbell-Shape	109
5.3.3 Arrow-Shape	110
5.3.4 Bone-Shape	111
5.3.5 U-Shape	113
5.3.6 Rectangular Defect with 4 Slits - Shape	114
5.4 Design of 90° BLC with - 10 dB Coupling Using DGS Microstrip Line	115
5.4.1 90° BLC with Rectangular-Shape DGS Microstrip Line	116
5.4.2 90° BLC with Dumbbell-Shape DGS Microstrip Line	117
5.4.3 90° BLC with Arrow-Head DGS Microstrip Line	118
5.4.4 90° BLC with Bone-Shape DGS Microstrip Line	119