Comparison of Quantiferon-TB Assay with Conventional Methods for Diagnosis of Genitourinary Tuberculosis

Thesis for the partial Fulfillment for the M.D Degree in Microbiology and Immunology

By

MOHAMED MORSHEDY ALDESOKY ISMAEL

Assistant lecturer of Microbiology and Immunology Faculty of Medicine (Damietta) – Al -Azhar University SUPERVISED BY

Dr. AHMED OSMAN EL-KAFRAWI

Professor and head of Microbiology and Immunology Faculty of Medicine – Al-Azhar University

Dr. MOSTAFA YOSEF ALI EL-MISHAD

Professor of Microbiology and Immunology Faculty of Medicine – Al-Azhar University

Dr. SOMIA ABD EL-LATIF ESSA

Professor of Microbiology and Immunology Faculty of Medicine – Cairo University

Dr. HAMDI ABDEL HAMED ABD ELKADER

Professor of Urology Faculty of Medicine – Al-Azhar University

Dr. MOHAMED MOHAMED AHMED SALEH

Assistant Professor of Microbiology and Immunology Faculty of Medicine (Damietta) – Al-Azhar University

Faculty of Medicine Al-Azhar University 2013

بسم الله الرحمن الرحيم

وَقُلِ اعْمَلُوا فَسَيرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ اللَّهُ وَسَتُرَدُّونَ إِلَىٰ عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ

صدق الله العظيم

Acknowledgement

Always thanks and grateful to ALLAH who helps me.

First, I wish to express my deepest appreciation to **Dr. MOSTAFA YOSEF ALI EL-MISHAD** Professor of Medical Microbiology and Immunology, Faculty of Medicine, Al- Azhar University for his supervision, guidance in the selection of cases, collection of samples and for his continuous guidance throughout this study.

I feel greatly grateful to **Dr. AHMED OSMAN EL-KAFRAWI** Professor of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University for his help and continuous encouragement throughout this study.

It is a great honor to me to express my great thankfulness to **Dr. SOMIA ABD EL-LATIF ESSA** Professor of Microbiology and Immunology, Faculty of Medicine, Cairo University, for the immeasurable time and effort in bringing this work to light

I feel greatly indebted to **Dr. HAMDI ABDEL HAMED ABD ELKADER** Professor of Urology, Faculty of Medicine, Al-Azhar University for his great help and assistance offered.

I would like to express my deepest gratitude to **Dr. MOHAMED MOHAMED AHMED SALEH** Assistant Professor of Microbiology and Immunology, Faculty of Medicine, (Dammietta) – Al-Azhar University for his help and continuous encouragement throughout this study.

Finally, my deep grateful to **Dr. AHMED ABD EL MENEM** consultantan of urology in AL-Mataria Institute of Urology for his great help in this study and all the staff members in Medical Microbiology and Immunology Department Faculty of Medicine , Al-Azhar University for their help and assistance .

Contents

Item	Page		
Acknowledgement	II		
List of tables			
List of figures			
List of abbreviations	VIII		
Introduction			
Aim of the work	٥		
Epidemiology	٦		
Bacteriology	٨		
Transmission of Mycobacterium tuberculosis	١.		
Risk factors	11		
Pathogenesis and immune response of tuberculosis	17		
Pulmonary tuberculosis			
Latent tuberculosis			
Extrapulmonary Tuberculosis			
Genitourinary tuberculosis	19		
Mode of infection of genitourinary tuberculosis	19		
Pathogenesis of genitourinary tuberculosis	۲.		
Complications of genitourinary tuberculosis	77		
Clinical picture of genitourinary tuberculosis			
Diagnosis of Tuberculosis			
Clinical diagnosis			
Radiological diagnosis			
Histopathological diagnosis			
Laboratory diagnosis			
Specimens Collection, Transport and Storage	79		
Decontamination of specimens	٣.		
Identification of mycobacterium species	71		
Microscopic diagnosis	71		
Cultivation of MTB	45		
Solid Media	41		
Egg-based media	٣٦		
Agar-based media	٣٧		
Liquid Media			
Biphasic media	٣٨		

In House (Laboratory-developed) Assays	٣٩	
The Colorimetric Redox Indicator Methods		
The Radiometric BACTEC TB-460 System		
The non radiometric BACTEC Systems		
Mycobacteria Growth Indicator Tube (MGIT)		
Microscopic Observation Drug Susceptibility (MODS)		
Colony morphology	٤٣	
Biochemical tests	٤٤	
Molecular diagnosis of TB		
Detection of M. tuberculosis in clinical samples	٤٦	
Molecular tests for species identification of	٤٨	
mycobacteria		
Detection of mutations associated with drug resistance		
Immunological diagnosis of TB		
Tuberculin skin test		
T-SPOT.TB test	٥٢	
QuantiFERON-TB Gold Test		
Treatment of genitourinary tuberculosis		
Prevention and control		
Patients, Materials and Methods		
Results	٧ ٦	
Discussion	9 •	
Summary	1.7	
Conclusions and recommendations	1.7	
References	1.9	
Arabic summary	175	

List of tables

Table	Page	
Table (1): Comparison between latent and active	10	
tuberculosis.		
Table (2): Sex distribution among all suspected cases.	٧ ٦	
Table (3): Age distribution among all suspected cases.	YY	
Table (4): Clinical presentation for all suspected cases.		
Table (5): Clinical presentation for all suspected cases in relation to gender.	٧٩	
Table (6): Summary of the final three tests results.	٨.	
Table (7): Sex distribution among positive cases by any	۸.	
diagnostic method used.	, ,	
Table (8): Age distribution among positive cases by any	٨١	
diagnostic method used.		
Table (9): Clinical presentation for positive and negative	٨٢	
cases (by any diagnostic test):		
Table (10): Number of pus cells in urine sediment in	٨٢	
relation to positive and negative cases.		
Table (11): Number of RBCs in urine sediment in relation	٨٣	
to positive and negative cases.		
Table (12): ESR in relation to positive and negative cases.	Λ ξ	
Table (13): White blood cells count (WBCs) in relation to positive and negative cases.		
Table (14): Laboratory diagnosis by film (ZN stain) in		
relation to gender.		
Table (15): Laboratory diagnosis by culture in relation to	Λo	
gender.		
Table (16): Laboratory diagnosis by Quantiferon in	٨o	
relation to gender.		
Table (17): Relations between the three tests results.	入て	
Table (18): Diagnosis by film (ZN stain) in relation to total	۸٧	
positive cases.		
Table (19): Diagnosis by culture in relation to total positive	٨٨	
cases.		
Table (20): Diagnosis by Quantiferon in relation to total	٨٨	
positive cases.		

List of figures

figure	Page
Figure (1): T SPOT-TB procedure.	04
Figure (2): The preparation of kit standard.	77
Figure (3): Sex distribution among all suspected	V 7
cases.	
Figure (4): Age distribution among all suspected	7
cases.	
Figure (5): Clinical presentation for all cases.	٧٨
Figure (6): Sex distribution among positive cases	80
by any diagnostic method used.	
Figure (7): Age distribution among positive cases	81
by any diagnostic method used.	

List of abbreviations

Abbreviation	Full meaning
AFB	Acid Fast Bacilli
AIDS	Acquired Immunodeficiency Syndrome
ADA	Adenosine Deaminase
APC	Antigen Presenting Cells
BCG	Bacillus Calmette Guirine
CDC	Centers for Disease Control and Prevention
CXR	Chest X-Ray
CV	Coefficient of Variation
CBC	Complete Blood Count
CT	Computerized Tomography
CFP10	Culture Filtrate Protein 10
DTH	Delayed Type Hypersensitivity
DOTS	Directly Observed Treatment Short course
ESAT6	Early Secreted Antigenic Target
ELISA	Enzyme Linked Immunosorbant Assay
ELISPOT	Enzyme-linked Immunospot
ESR	Erythrocyte Sedimentation Rate
EPTB	Extrapulmonary Tuberculosis
XDR-TB	extremely drug-resistant tuberculosis
FGTB	Female Genital Tuberculosis
FNAC	Fine Needle Aspiration Cytology
FDA	Food and Drug Administration
GU	Genitourinary
GUTB	Genitourinary tuberculosis
GD	Green Diluent
GI	Growth Index
HIV	Human Immunodeficiency Virus
HLA	Human Leucocytic Antigen
ICT	Immunochromatographic test kit
IT	In Tube
IVU	Interavenous Urography
IGRA	Interferon Gamma Release Assays
INF-γ	Interferon-γ
IL-2	Interleukin-2

IVP	Intra Venous Pylography
KAN	Kanamycin
LTBI	Latent Tuberculosis Infection
LAMP	Loop-mediated isothermal Amplification
LJM	Lowenstein-Jensen Medium
MRI	Magnetic Resonance Image
MHC	Major Histocombitability
MODS	Microscopic Observation Drug Susceptibility
MDR	Multidrug Resistant
MOTT	Mycobacteria Other Than Tuberculosis
MAC	Mycobacterium avium complex
M. bovis	Mycobacterium bovis
MGIT	Mycobacterium Growth Indicator Tube
MTB	Mycobacterium Tuberculosis
M. tuberculosis	Mycobacterium Tuberculosis
MTD	Mycobacterium tuberculosis Direct Test
NALC	N-acetyl-L-cysteine
NTP	National Tuberculosis Control Program
NPV	Negative Predictive Value
NAA	Nucleic Acid Amplification
OD	Optical Density
OFL	Ofloxacin
PBMCs	Peripheral Blood Mononuclear Cells
PCR	Polymerase Chain Reaction
PPV	Positive Predictive Value
PPD	Purified Protein Derivative
QFT-G	QuantiFERON-TB Gold
RD1	Region of Difference 1
RFLP	Restriction Fragment Length Polymorphism
rRNA	ribosomal RNA
SLDs	Second line drugs
NaOH	Sodium hydroxide
TST	Tuberculin Skin Test
TB	Tuberculosis
TNF-α	Tumor Necrosis Factor Alpha
UV	Ultraviolet

USA	United States of America
UO	Ureteric Orifice
UTP X ray	Urinary Tract Plain X ray
VUR	Vesico Ureteric Reflux
WBCs	White blood cells count
WHO	World Health Organization
Z-N	Ziehl-Neelsen

Introduction

Pulmonary tuberculosis was known since the time of Hippocrates as "phthisis", which is derived from the Greek meaning consumption or wasting away. Later, Aristotle and Galen recognized that Tuberculosis was transmissible (*Dormandy*, 1999). The Tuberculosis epidemic in Europe, later known as the "Great White Plague", started at the beginning of the 17th century. In 1689, the term "consumption" was used to denote Tuberculosis (TB) (*Ducati et al.*, 2006). Tuberculosis was called consumption, because it seemed to consume people from within, with a bloody cough, fever, pallor, and long relentless wasting (*Rudy's List of Archaic Medical Terms*, 2006).

Pulmonary tuberculosis in an Egyptian mummy was diagnosed & confirmed by Polymerase Chain Reaction (PCR) & this was probably the first confirmed case of pulmonary tuberculosis using PCR in an ancient Egyptian mummy (Nerlich et al., 1997).

In 1882, Robert Koch discovered Tubercle bacillus, and in 1895, Wilhelm Röntgen discovered X-rays. These scientific triumphs were quickly applied to clinical medicine, so that around 1905, doctors could make a precise diagnosis of consumption. The steady fall in the incidence of TB was confounded by a steep rise during and after the two world wars (Gillespie, 2006).

Since the mid-1980s, however, this decreasing trend slowed down and even reversed in some countries, such as the United States of America (USA). The resurgence of the disease was attributed to the epidemic of Human Immunodeficiency Virus (HIV) infection, diminished public health efforts to control TB, rising poverty, homelessness, overcrowded conditions, and immigration from countries with a high prevalence of TB (*Lienhard*, 2001).

١

Tuberculosis has recently reemerged as a major health concern. Each year, approximately 2 million persons worldwide die of tuberculosis and 9 million become infected (*Nancy et al.*, 2009).

From the most common forms of extra pulmonary TB is genitourinary disease, accounting for 27% (range, 14 to 41%) worldwide (*Prasenjit et al., 2008*). Genitourinary tuberculosis (GUTB) is the second most common form of extrapulmonary tuberculosis, with more than 90% of cases occurring in developing countries (*Aula et al., 2011*).

Genitourinary tuberculosis represents a challenge in diagnosis and treatment due to variations in clinical and radiological signs, patient history and difficulty in the isolation of the bacilli (Aslan et al., 2007).

The difficulty in diagnosis is due to the lack of efficient and sensitive diagnostic tools as well as its variable anatomical location. Symptoms are insidious and non-specific. Symptoms typical of active tuberculosis such as fever, weight loss, cough and haemoptysis are uncommon in patients with genitourinary tuberculosis. The most common symptoms, if present are frequency (60%) which is usually intermittent, followed by dysuria (34%) and haematuria (28%). The disease often presents with symptoms of bladder inflammation in (21%) of patients, haemospermia with or without necrospermia in males and tubal in Complication of genitourinary obstructions females. tuberculosis includes renal calcification, hypertension, stricture, non-specific bacterial infection, impaired renal function and sterility. Early diagnosis of cases by simple laboratory technique may give the best chance of treatment before major complications are established. There are very few diagnostic tools from which to choose. Microscopy is the most rapid diagnostic tool, which in ideal settings can produce same day results, but it is very insensitive. Culture systems are sensitive, but often take up to four weeks to obtain conclusive results even with enhanced culture systems and many culture with false negative results due to intermittent passage of the organism. More sensitive and rapid TB diagnosis is not yet available (*Edford et al.*, 2009).

It has been difficult to develop an Enzyme Linked Immunosorbant Assay (ELISA) utilizing a suitable antigen because *Mycobacterium tuberculosis* (MTB) shares a large number of antigenic proteins with other microorganisms that may or may not be pathogenic. The PCR results must be corrected for the presence of inhibitors as well as for DNA contamination (*Sanjay et al.*, 2003).

Most of the published studies compared the performance of in vitro Interferon- γ (INF- γ) release assays with Tuberculin Skin Test (TST) for detection of Latent *Tubercle Bacilli* Infection (LTBI). Judging from currently accumulated research experience, in vitro INF- γ release assays are likely to be promising alternatives to the TST in the diagnosis of LTBI. However, their performance in diagnosis of active disease is still under study (*Chee et al.*, 2008).

The Centers for Disease Control and Prevention (CDC) has published new TB detection guidelines, advising that QuantiFERON(R)-TB Gold, a simple, one-step blood test that can be used as a rapid diagnosis of tuberculosis infections, for early detection and control of disease(*CDC*, 2006).

Enzyme-linked Immunospot (ELISPOT) and ELISA techniques have been developed to rapidly detect IFN- γ production by M TB-specific Peripheral Blood Mononuclear Cells (PBMCs) for the diagnosis of MTB infection. (*Pai et al.*, 2007).

QuantiFERON-TB Gold include 6 kDa Early Secreted Antigenic Target (ESAT6) and Culture Filtrate Protein 10 (CFP10) which are both encoded by the region of difference 1 (RD1) which is present in *Mycobacterium tuberculosis* (*M. tuberculosis*) and *Mycobacterium bovis* (*M. bovis*), but absent from *M. bovis* Bacillus Calmette Guirine (BCG) and most

environmental mycobacteria. ESAT6 is an immunodominant T cell-stimulatory antigen and is recognized by specific IFN-γ secreting T cells present in greater numbers in patients with active disease as compared with those who are un-infected The sensitivity of ESAT6 and CFP10 induced mycobacterium-specific T cell responses is greatest in a BCG unvaccinated population in a non-endemic region, and most studies have been performed in areas of low tuberculosis transmission with less data available from high transmission TB endemic regions (*Zahra et al.*, 2009).

The whole-blood interferon-gamma enzyme-linked immunosorbent assay (QuantiFERON-TB Gold [QFT-G]; has been studied mainly for diagnosing active pulmonary tuberculosis or latent TB (*Kyoung et al.*, 2009).