Treatment of Bicondylar Tibial Plateau Fractures by single lateral locked Plate

Thesis

Submitted for partial fulfilment of requirement of M.D Degree in Orthopedic surgery

By

Ahmed Hasan El.Bana Ibrahim M.B. B.ch.

Supervised by

Prof. Dr. Hassan Elgamal

Professor of Orthopedic surgery

Faculty of Medicine-Cairo University

Prof. Dr. Sherif Abdelatif Othman

Associate Professor of Orthopedic surgery
Faculty of Medicine-Cairo University

Dr. Wessam Gamal Abu Senna

Lecturer of Orthopedic surgery
Faculty of Medicine-Cairo University

Faculty of Medicine
Cairo University
2014

Table Of Content

Chapter	Content	Page
	Table of Content	1
	Acknowledgment	3
	Abstract	4
	List of Figures	5
	List of Tables	10
	List of Abbreviation	12
	Introduction	13
	Aim of the work	15
Chapter 1	Review of literature	
	I- Anatomical landmarks of the proximal	16
	tibia	
	II- Mechanism of injury and classifications of	26
	tibial plateau fractures	
	III- Management of tibial plateau fractures	36
	IV- Complications of tibial plateau fractures	53
Chapter 2	Material and Methods	57
Chapter 3	Results	74
Chapter 4	Discussion and Conclusion	95
Chapter 5	Case presentation	111
Chapter 6	References	155
Chapter 7	Arabic Summary	166

بسم الله الرحمن الرحيم

<u>Acknowledgment</u>

First of all I would like to thank "Allah" for helping me to finish this work.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Hassan Elgamal**, Professor of Orthopaedic surgery, Cairo University, for his supervision, encouragement and fruitful remarks that are inscribed within this work. His experience and wide knowledge were helpful in guiding me throughout the steps of this work.

I am extremely grateful to A. Prof. Dr. Sherif Abdelatif Othman, Associate Professor of Orthopaedic surgery, Cairo University, for his supervision and reliable advice throughout this work.

I also feel extremely grateful to **Dr. Wessam Gamal Abu Senna**, lecturer of Orthopaedic surgery, Cairo University, for his continuous encouragement, supervision and sincere guidance throughout this work.

I would like also to thank all my professors and my colleagues for their great help and support.

Finally I wish to express my thanks to my wife Mrs. Hebatallh Refaat Zayed, my lovely daughter Talia and my family for their love, care and continuous encouragement and patience throughout this work and my life.

I hope from "Allah" to accept and keep this work for his own face.

Abmed Hasan El.Bana

ABSTRACT

Introduction: Bicondylar tibial plateau fractures need surgical treatment to achieve good clinical results. The locking plate combines the technical advantages of an angular stable plate with those of the modern biological plating technique.

Hypothesis: Bicondylar Tibial Plateau Fractures can be effectively managed using a single lateral locking plate.

Materials and methods: Between May 2012 and November 2013, 20 patients with a mean age of 38 years (Range from 24-57 years) with bicondylar tibial plateau fractures with or without metaphyseal extension. Patients were diagnosed clinically, checked with standard X-rays, CT was done for all cases. Patients were treated by single lateral anatomically contoured locked plate through LISS or Polyaxial locking plate systems with or without additional screws from medial side. Radiological evaluation and functional assessment was done according to the Rasmussen Knee score. Patients were followed-up for an average of 12 months.

Results: Union was achieved in all patients with a mean knee range of motion of 1.5°-130° (range 0°-10° for extension, range 100°-135° for flexion). The mean Functional Rasmussen Knee score at last follow-up was 94.7% ranged between (83.3%–100%). The mean Anatomical Rasmussen Knee score at last follow-up was 92.2% ranged between (77.7%–100%). Mean Functional Rasmussen Knee score of patients had (Schatzker V fractures) was 96%, however it was 82.5% in those had (Schatzker VI fractures). Mean Anatomical Rasmussen Knee score of patients had (Schatzker V fractures) was 93.8%, however it was 90.3% in those had (Schatzker VI fractures). Of the 20 cases, 2 had wound related problems, 1 case suffered from preoperative proneal nerve palsy, 1 cases had preoperative compartment syndrome, 1 case had fixation failure and one patient suffered from hardware irritation.

Conclusion: Surgical treatment of bicondylar tibial plateau fractures with the single lateral locked plate that was evaluated in our study can lead to a good functional and anatomical outcome and considered an effective system for providing fracture stabilization provided that the correct surgical technique is used. Awareness of potential hardware complications is essential.

Keywords: Tibial plateau fracture, Locked plate, LISS, Polyaxial locking plate.

List of Figures

Figure Number	Comment	Page Number
(Fig.1-1)	Anterior bony aspect of right knee joint in extension, the patella is excised	16
(Fig.1-2)	Superior view of bony landmarks of the left tibial plateau	18
(Fig.1-3)	Interior superior view of the tibia	20
(Fig.1-4)	Anterior view of right knee in flexion. The Patella is excised.	21
(Fig.1-5)	Structures of anteromedial aspect of right knee joint	22
(Fig.1-6)	Structures of Posterolateral aspect of right knee joint	23
(Fig.1-7)	Anastmosis around knee joint	25
(Fig.1-8)	Relationship of force to tibial plateau fractures	27
(Fig.1-9)	Hohl and Moore classification of tibial plateau fractures	29
(Fig.1-10)	Hohl and Moore classification of proximal tibial fracture dislocations	30
(Fig.1-11)	Schatzker classification of tibial plateau fractures	32
(Fig.1-12)	Significant soft tissue swelling with fracture blisters with tibial plateau fracture	37
(Fig.1-13)	Measurement of articular depression	38
(Fig.1-14)	Measurement of condylar widening	39
(Fig.1-15)	Value of 3D C.T.	40
(Fig.1-16)	Anterolateral approach; clinical photograph of a patient's left knee	44
(Fig.1-17)	Minimally invasive percutaneous osteosynthesis; clinical photograph of a patient's left knee	46
(Fig.1-18)	Knee-spanning external fixator for emergency stabilization of tibial plateau fracture	49
(Fig.2-1)	Distribution of patient sex	58
(Fig.2-2)	Distribution of patient age	58
(Fig.2-3)	Distribution of patient occupation	59

(Fig.2-4)	Distribution of mechanism of injury	60
(Fig.2-5)	Distribution of Schatzker Classification	61
(Fig.2-6)	Distribution of associated injuries	62
(Fig.2-7)	Approach used for surgery	64
(Fig.2-8)	Intraoperative fluoroscopic view showing temporary fixation of the fracture by k wires after reduction.	65
(Fig.2-9)	Intraoperative fluoroscopic view showing proper plate position	65
(Fig.2-10)	Diagrammatic representation for assembly of the plate to target guide	66
(Fig.2-11)	Clinical intraoperative photo for positioning of the plate using target guide	67
(Fig.2-12)	Mechanism of polyaxial locking screw	68
(Fig.2-13)	Radiographic measurement of MPTA and PPTA and normal reference range	70
(Fig.3-1)	Follow up period	76
(Fig.3-2)	Functional Rasmussen Knee Scoring system at third visit	77
(Fig.3-3)	Anatomical Rasmussen Knee Scoring system at third visit	78
(Fig.3-4)	Functional Rasmussen Knee Scoring system at fifth visit	79
(Fig.3-5)	Anatomical Rasmussen Knee Scoring system at fifth visit	80
(Fig.3-6)	Comparison between functional Rasmussen Knee Scoring system at 4-6 months and 12 months	81
(Fig.3-7)	Comparison between anatomical Rasmussen Knee Scoring system at 4-6 months and 12 months.	82
(Fig.3-8)	Mean Rasmussen Knee Score at 4-6 months and 12 months postoperatively	83
(Fig.3-9)	Relation between age and mean final Rasmussen knee score	85
(Fig.3-10)	Relation between fracture classification and mean Rasmussen knee score	86
(Fig.3-11)	Day of return to work	87
(Fig.3-12)	Summery of postoperative complications of our study	88
(Fig.3-13)	Preoperative X rays and C.T of patient (#20)	89
(Fig.3-14)	Post operative X rays of patient (#20)	89

(Fig.3-15)	Preoperative X rays and C.T of patient (#8)	90
(Fig.3-16)	Post operative X rays of patient (#8)	90
(Fig.3-17)	Preoperative X rays and C.T of patient (#19)	91
(Fig.3-18)	Post operative X rays of patient (#19)	91
(Fig.3-19)	Preoperative X rays and C.T of patient (#5)	92
(Fig.3-20)	Post operative X rays of patient (#5)	93
(Fig.3-21)	Preoperative X ray and C.T. of patient (#10)	94
(Fig.3-22)	Last X rays of patient (#10)	94
(Fig.5-1)	Preoperative X rays of case 1	112
(Fig.5-2)	Preoperative C.T. of case 1	112
(Fig.5-3)	Instruments of lateral proximal tibial locked plate of Synthesis	113
(Fig.5-4)	Intraoperative view with left knee semiflexed on traction table	114
(Fig.5-5)	Intraoperative fluoroscopic view of (case 1)with fixation of the fracture by k wire	114
(Fig.5-6)	Intraoperative fluoroscopic view of (case 1) after adjustment of plate position and temporary fixation by k wire	115
(Fig.5-7)	Post operative AP& lateral views of case 1	116
(Fig.5-8)	Post operative radiological assessment of case 1	116
(Fig.5-9)	Follow up X rays after 8 weeks from surgery for case 1	118
(Fig.5-10)	Follow up X rays showing measurements after 4 months from surgery for case 1	119
(Fig.5-11)	Follow up X rays after 9 months from surgery for case 1	119
(Fig.5-12)	Follow up X rays showing measurements after 12 months from surgery for case 1	120
(Fig.5-13)	Preoperative X rays of case 2	122
(Fig.5-14)	Preoperative C.T. of case 2	123
(Fig.5-15)	Intraoperative fluoroscopic view of (case 2) after fixation of the fragments by cancellous screws	124
(Fig.5-16)	Post operative AP& lateral views of case 2	125
	_	

(Fig.5-17)	Post operative radiological assessment of case 2	125
(Fig.5-18)	AP& lateral views of second visit of case 2	127
(Fig.5-19)	Follow up X rays showing measurements after 4 months from surgery for case 2	128
(Fig.5-20)	Follow up X rays after 9 months from surgery for case 2	128
(Fig.5-21)	Follow up X rays showing measurements_after 12 months from surgery for case 2	129
(Fig.5-22)	Preoperative X rays of case 3	131
(Fig.5-23)	Preoperative C.T. of case 3	132
(Fig.5-24)	Intraoperative fluoroscopic view after reduction of articular portions of both tibial plateaus of case 3	133
(Fig.6-25)	Postoperative view after finishing surgery of case 3	133
(Fig.5-26)	Post operative AP& lateral views of case 3	134
(Fig.5-27)	Post operative assessment of X rays of case 3	134
(Fig.5-28)	AP& lateral views of second visit of case 3	135
(Fig.5-29)	Follow up X rays showing measurements after 4 months from surgery for case 3	136
(Fig.5-30)	Follow up X rays showing measurements after 12 months from surgery for case 3	137
(Fig.5-31)	Preoperative X rays of case 4	140
(Fig.5-32)	Preoperative C.T. of case 4	141
(Fig.5-33)	Postoperative X rays of case 4	142
(Fig.5-34)	Postoperative assessment of X rays of case 4	143
(Fig.5-35)	AP& lateral views of second visit of case 4	144
(Fig.5-36)	Follow up X rays showing measurements after 4 months from surgery for case 4	145
(Fig.5-37)	Follow up X rays after 4 months from surgery for case 4	145
(Fig.5-38)	Follow up X rays showing measurements after 12 months from surgery for case 4	146
(Fig.5-39)	Follow up X rays of other injuries after 12 months from surgery for case 4	146

(Fig.5-40)	Preoperative X rays of case 5	149
(Fig.5-41)	Preoperative C.T. of case 5	150
(Fig.5-42)	Postoperative X rays of case 5	151
(Fig.5-43)	Postoperative radiological assessment of case 5	152
(Fig.5-44)	Plain X rays after revision of case 5	152
(Fig.5-45)	Postoperative radiological assessment after revision of case 5	153

List of Tables

Table Number	Content	Page Number
(Table 1-1)	The AO-OTA Classification of proximal tibial fractures	31
(Table 2-1)	Distribution of patient sex	57
(Table 2-2)	Distribution of patient age	57
(Table 2-3)	Distribution of patient occupation	59
(Table 2-4)	Distribution of mechanism of injury	60
(Table 2-5)	Distribution of Schatzker Classification	61
(Table 2-6)	Distribution of associated injuries	62
(Table 2-7)	I- Anatomical Grading of Rasmussen Knee Score	72
(Table 2-8)	II- Functional Grading of Rasmussen Knee Score	73
(Table 3-1)	Post operative radiological assessment	75
(Table 3-2)	Follow up period	76
(Table 3-3)	Functional Rasmussen Knee Scoring system at third visit	77
(Table 3-4)	Anatomical Rasmussen Knee Scoring system at third visit	78
(Table 3-5)	Functional Rasmussen Knee Scoring system at fifth visit	79
(Table 3-6)	Anatomical Rasmussen Knee Scoring system at fifth visit	80
(Table 3-7)	Comparison between functional Rasmussen Knee Scoring system at 4-6 months and 12 months	81
(Table 3-8)	Comparison between anatomical Rasmussen Knee Scoring system at 4-6 months and 12 months	82
(Table 3-9)	Mean Rasmussen Knee Score at 4-6 months and 12 months postoperatively	83
(Table 3-10)	Summary of Rasmussen knee scores of our study	84
(Table 3-11)	Relation between age and mean final Rasmussen knee score	85
(Table 3-12)	Relation between fracture classification and mean Rasmussen knee score	86
(Table 3-13)	Day of return to work	87
(Table 3-14)	Summary of postoperative complications of our study	88
(Table 4-1)	Comparison between our study and other studies	98

(Table 5-1)	Anatomical Rasmussen knee scoring system at third and fifth visits for case 1	120
(Table 5-2)	Functional Rasmussen knee scoring system at third and fifth visits for case 1	121
(Table 5-3)	Anatomical Rasmussen knee scoring at third and fifth visits of case 2	129
(Table 5-4)	Functional Rasmussen knee scoring system at third and fifth visits for case 2	130
(Table 5-5)	Anatomical Rasmussen knee scoring system at third and fifth visits for case 3	137
(Table 5-6)	Functional Rasmussen knee scoring system at third and fifth visits for case 3	138
(Table 5-7)	Anatomical Rasmussen knee scoring system at third and fifth visits for case 4	147
(Table 5-8)	Functional Rasmussen knee scoring system at third and fifth visits for case 4	148

List of Abbreviations

AO-OTA : Arbeitsgemeinschaft fü Osteosynthesefragen-

Orthopaedic Trauma Association

CT : Computed Tomography

MRI : Magnetic Resonance Imaging

MIPO: Minimal Invasive Plate Osteosynthesis /

Minimal Invasive Percutaneus Osteosynthesis

Fig. : Figure

ACL : Anterior Cruciate Ligament

PCL: Posterior Cruciate Ligament

CPM : Continuos Passive Motion

MCL : Medial Collateral Ligament

LCL : Lateral Collateral Ligament

PFL: Popliteal Femoral Ligament

PT : Popliteus tendon

ATLS : Advanced Trauma Life Support

API : Arterial Pressure Index

AP : Anterior-posterior

3D CT : 3 Dimension Computed Tomography

ORIF : Open reduction and internal fixation

SHF : Sheffield Hybrid Fixator

LISS : Less Invasive Stabilization System

ROM : Range Of Motion

NWB : Non Weight Bearing

PWB : Partial Weight Bearing

FWB : Full Weight Bearing

MVA : Motor Vehicle Accident

CS : Culture & Sensitivity

ICU : Intensive Care Unit

Introduction

The tibial plateau refers to the proximal end of the tibia including the metaphyseal and epiphyseal regions as well as the articular surfaces made up of hyaline cartilage. By Arbeitsgemeinschaft fü Osteosynthesefragen/Orthopaedic Trauma Association (AO-OTA) classification, the tibial plateau includes the metaphysis to a distal distance equal to the width of the proximal tibia at the joint line. Tibial plateau fractures constitute 1% of all fractures and 8% of fractures in the elderly. (1)

The injury patterns to the tibial plateau depend on the magnitude of forces, the quality of the bone and the age. It is generally believed that the relatively increased strength of the medial tibial condyle structure, and the normal valgus alignment of the lower limb are responsible for the higher incidence of lateral tibial condylar fractures secondary to low-energy forces. Similar amount of forces cause split or wedge fractures in the young population, or depression fractures in the osteoporotic bone of the elders. (2)

Currently, there are two classifications for tibial plateau fractures in use, the AO/OTA and the one of Schatzker's. The AO/OTA classification although complex, offers a more precise description of the fracture pattern, while Schatzker's classification is more reproducible and reliable. Other classifications like Hohl, Hohl and Moore are not commonly used. (3)

A thorough history should be obtained, including determination of the mechanism of injury and the patient's overall medical status, and functional demands. Physical examination is necessary to detect concomitant ligamentous injuries, neurovascular injuries, and other injuries. Anteroposterior, lateral, and oblique radiographs and CT scans are necessary to evaluate these fractures. The exact role of MRI in evaluating patients with tibial plateau fractures is still evolving. (4)