Comparative Study between the Urodynamic Effects of Anti-muscarinic Drugs and the Possible Urodynamic Effects of Nicorandil and Carbamazepine on Over Active Bladder Induced By Type-1 Diabetes Mellitus [Experimental and Clinical Study]

Thesis
Submitted in Partial Fulfillment of MD in Pharmacology
By

Amr Maher Galal

M.B.B.CH.

Assistant Lecturer of Pharmacology

Faculty of Medicine Cairo University

Supervisors

Prof. Dr. Magda Zaki

Professor of Medical Pharmacology
Faculty of Medicine
Cairo University

Prof. Dr. Hisham Attia

Professor of Medical Pharmacology
Faculty of Medicine
Cairo University

Prof. Dr. Hosni Khairi

Professor of Urology Faculty of Medicine Cairo University

Dr. Hesham Mahmoud

Assistant Professor of Medical Pharmacology Faculty of Medicine Cairo University

Acknowledgements

First of all thanks to Allah

I would like to express my deep gratitude, appreciation and sincere thanks to *Professor Dr. Magda Mohamed Zaki Professor of Medical Pharmacology Faculty of Medicine, Cairo University,* for her support, valuable advices, guidance, and effort through out this work.

I am sincerely indebted to *Professor Dr. Hisham Attia Awad Professor of Medical Pharmacology, Faculty of Medicine, Cairo University,* for his faithful supervision, great valuable remarks, and encouragement and great assistance until this work was fulfilled.

Deep thanks to *Or. Hesham Mohamed Mahmoud Assistant Professor of Medical Pharmacology, Faculty of Medicine, Cairo University*, for his kind helps in every step in this Work and for his meticulous supervision and valuable assistance in completing this work.

I would like to express a lot of thanks to *Professor Dr. Hosni Khairi Salim Professor of Urology, Faculty of Medicine, Cairo University,* for his notable help in clinical division of this work and his valuable advices and remarks until this work was fulfilled.

Finally I would like to express my special deep thanks and a great of gratitude to all members of *Medical Pharmacology Department*, Faculty of Medicine, Cairo University for their great help in completing our work.

Abstract

Background: Overactive bladder (OAB) is a common clinical problem.

Materials and methods: **Experimental study:** seventy two adult male albino rats weighing 250-300 g, were classified into six groups. Blood glucose, cystometry, dose concentration response to Ach and histopathological examination were done. **Clinical Study:** The study was conducted on fifty with type-1 diabetes mellitus and over active bladder divided into five groups. Urodynamic studies were done and voiding diary and lower urinary symptom sheet was collected from each patient before and after treatment.

Results: Experimental findings: Diabetic rats exhibited a significant increase in the intravesical pressures, in tonic contractions to submaximal dose of ACh. and in bladder weight/body weight ratio and musculosa thickness compared to control group, while a significant reduction in those parameters were found in diabetic treated groups to diabetic group. For bladder volume, Oxybutinin and Tolterodine showed significant decrease while Nicorandil and Carbamazepine groups showed significant increase. Clinical findings: in Tolterodine groups urodynamic parameters and bladder Oxybutinin, capacities were significantly changed compared to placebo group while insignificant change were found in Nicorandil and Carbamazepine groups. Conclusion: Carbamazepine and Nicorandil potentially suppress overactive bladder resulted from diabetes as shown in experimental work. On the other hand the clinical study didn't show a significant role for both drugs which needs further clinical trials with a more objective investigation.

Key words: Overactive bladder-Diabetes-Oxybutinin-Tolterodine-Carbamazepine-Nicorandil

Table of Contents

List of abbreviations
List of tables
List of figures
List of photos
Introduction and aim of work1
Review of literature:
Physiology of normal bladder4
Overactive bladder7
Pathogenesis of bladder dysfunction in diabetes10
Treatment modalities of over active bladder14
Oxybutinin19
Tolterodine21
Carbamazepine24
Nicorandil
Urodynamic study29
Animal models35
Materials and methods

Results	57
Discussion	96
Summary & Conclusion	116
References	124

List of Abbreviations

+IWT: positive ice-water test

°C: celsius degree

5-HMT: 5-hydroxymethyl tolterodine

Ach: acetylcholine

AR: adrenergic receptor

ATP: adenosine triphosphate

BP: basal pressure

BPH: begnin prostatic hyperplasia

BTX: botulinum toxin

Ca²⁺: calcium

cc: cubic centimeter

cGMP: cyclic guanine monophosphate

Cl: chloride

cmH₂O: centimeter water

CNS: central nervous system

CPGA: 2-cyclohexyl-2-phenylglycolic acid

CYP: cytochrome P

DBD: diabetic bladder dysfunction

DIU: sucrose-induced diuresis group

dl: deciliter

DM: diabetes mellitus

DNA: deoxyribonucleic acid

DRG: dorsal root ganglion

EC₅₀: submaximal concentration

ENaC: epithelial sodium channel

EP1: prostaglandin E receptor

ER: extended release

F: french

FD: first desire

FDA: food and drug administration

g: gram

h: hour

H⁺: hydrogen

ICS: International Continence Society

IDDM: insulin dependent diabetes mellitus

IVP: intravesical pressure

IVPRs: intravesical pressure rises

K⁺: potasium

Kg: kilogram

L: leakage

L: lumber

M: muscarinic

MCC: maximum cystometric capacity

Mg: magnesium

min: minute

ml: milliliter

mM: millimole

mmHg: millimeter mercury

MP: maximum pressure

NA: noradrenaline

Na⁺: sodium

NAD⁺: nicotinamide adenine dinucleotide

NaH₂ PO₄: sodium dihydrogen phosphate

NaHCO₃: sodium bicarbonate

NANC: non-adrenergic non-cholinergic

Na_V: voltage-gated Na⁺ channels

ND: normal desire

NGF: nerve growth factor

NO: nitous oxide

OAB: overactive bladder

OTG: oxybutinin transdermal gel

Oxo: oxotremorine

P2X: ligand gated purine receptor

P2Y: G-protein bound purine receptor

p_{abd}: abdominal pressure

PAG: peri-aqueductal grey nucleus

 p_{det} : detrusor pressure

PGs: prostaglandins

PMC: pontine micturition center

PSC: pontine urine storage center

p_{ves}: intravesical pressure

RTX: RTX: resiniferatoxin

s.c: subcutaneous

S: sacral

s: second

SCI: spinal cord injury

SD: standard deviation

SD: strong desire

SHR: spontaneous hypertensive rats

STZ: Streptozotocin

Th: thoracic

TP: threshold pressure

trKA: neurotrophic tyrosine kinase receptor type 1

TRP: transient receptor potential

TRPV1: transient receptor potential channel vanilloid type1

U: urgency

UD: urinary diversion group

ug: microgram

WKY: Wistar Kyoto

α: alpha

β: beta

List of Tables

Table (1): Effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine for
one week on the mean plasma glucose level (mg/dl) in type -1 diabetic rats with
bladder dysfunction58
Table (2): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the mean Basal, Threshold and Maximal pressures (mmHg); IVPRs
and Bladder volume (ml) in type - 1 diabetic rats with bladder dysfunction 64-65
Table (3): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the mean intravesical pressure rises (IVPRs) in type -1 diabetic rats
with bladder dysfunction
Table (4): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the mean tonic contractions (g tension) in response to graded doses
of ACh (ug/ml) on bladder smooth muscle strips in type – 1 diabetic rats with bladder
dysfunction71
Table (5): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the mean tonic contractions (g tension) in response to submaximal
dose of Acetylcholine (Ach) (40ug/10 ml organ bath) on bladder smooth muscle strips
in type – 1 diabetic rats with bladder dysfunction72
Table (6): Effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine for
one week on the mean bladder weight/body weight ratio (mg/g) in type - 1 diabetic
rats with bladder dysfunction78

${f Table}$ (7): The effect of on oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the mean thickness of urinary bladder musclosa (micrometer) in
type – 1 diabetic rats with bladder dysfunction80
${f Table}$ (8): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on Urgency/day, Urgency incontinence/week and Nocturia/day in type
- 1 diabetic patients92-93
f Table~(9): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on Maximum bladder capacity and First desire capacity (cc) in type - 3
diabetic patients97

List of Figures

Figure (1): Bladder urothelial mechanico-afferent transduction
Figure (2): Filling cystometry showing detrusor overactivity during filling30
Figure (3): An example trace of normal bladder cystometry in a urethane-
anaesthetised rat34
${f Figure}$ (4): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the blood glucose level in 4^{th} week in type – 1 diabetic rats with
bladder dysfunction59
${f Figure}$ (5): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the percent of changes of Basal, Threshold and Maximal pressures
in type – 1 diabetic rats with bladder dysfunction67
Figure (6): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the percent changes of Bladder volume, Musclosa thickness and
Bladder weight/body weight in relation to Diabetic-saline group II in type – 1
diabetic rats with bladder dysfunction
${f Figure}$ (7): The effect of oral oxybutinin, tolterodine, nicorandil and carbamazepine
for one week on the concentration response curve of Ach on rats' isolated bladder
smooth muscle strips of type - 1 diabetic rats with bladder dysfunction
Figure (8): Effect of Ach induced tonic contraction of isolated rats' bladder smooth
muscle strips in control group received oral saline for 1 week74
Figure (9): Effect of Ach induced tonic contraction of isolated rats' bladder smooth
muscle strips in diabetic-saline group received oral saline water for 1 week74

Figure (10): Effect of Ach induced tonic contraction of isolated rats' bladder smooth
muscle strips in diabetic-oxybutinin group received oral oxybutinin for 1 week75
$\textbf{Figure (11):} \ \textbf{Effect of Ach induced tonic contraction of isolated rats' bladder smooth}$
muscle strips in diabetic-tolterodine group received oral tolterodine water for 1
week75
Figure (12): Effect of Ach induced tonic contraction of isolated rats' bladder smooth
muscle strips in diabetic-nicorandil group received oral nicorandil for 1 week76
Figure (13): Effect of Ach induced tonic contraction of isolated rats' bladder smooth
muscle strips in diabetic-carbamazepine group received oral carbamazepine for 1
week76
Figure (14): The effect of oral oxybutinin, tolterodine, nicorandil and
carbamazepine for one week on the percent of changes of Maximal pressure,
Mucosal thickness and Response to 40 ug/10ml organ bath Ach in relation to Control
group I in type – 1 diabetic rats with bladder dysfunction81
Figure (15): The effect of oral oxybutinin, tolterodine, nicorandil and
carbamazepine for one week on the percent changes of Urgency/day, Urgency
incontinence/week, Nocturia, Frequency of micturation/day in relation to placebo
group I in type – 1 diabetic rats with bladder dysfunction94
Figure (16): The effect of oral oxybutinin, tolterodine, nicorandil and
carbamazepine for one week on the percent changes of Maximum bladder capacity
and First desire capacity in relation to placebo group I in type – 1 diabetic patients
with bladder dysfunction98

List of Photos

Photo (1): Syringe pump KDS Model 100 series	50
Photo (2): Cross section showing normal bladder smooth muscle in c	ontrol group
(x100)	82
Photo (3): Cross section showing hypertrophied bladder smooth muscle	e in Diabetic-
saline group (x100)	83
Photo (4): Cross section showing bladder smooth muscle in Diabeti	c-Oxybutinin
group (x100)	84
Photo (5): Cross section showing bladder smooth muscle in Diabetic	:-Tolterodine
group (x100)	85
Photo (6): Cross section showing bladder smooth muscle in Diabet	ic-Nicorandil:
group (x100)	86
Photo (7): Cross section showing bladder smooth muscle in Diabetic-Ca	rbamazepine
group (X100)	87

Introduction

Urinary bladder plays the major role in urine storage and voiding. Its functioning is regulated by the peripheral and central nervous system. Micturition starts with sensing bladder filling, transferring data to the central nervous system processing center and efferent pathways resulting in the voiding response. Increasing the volume of the urinary bladder provokes afferent signals to the central nervous system. The molecular basis of distention sensing involves the urothelium as a major factor during this process (*Saeid and Ismail, 2010*).

Bladder urothelium is the interface between the lumen of the urinary tract and underlying tissues. It forms an active participant in normal bladder function. It exists as an integral part of a sensory web, in which it communicates the degree of bladder filling to the underlying nervous and muscular tissues, and affects their function. This communication is made possible by the urothelial input and output pathways, which allow it to respond to its chemical and physical environment, and engage in multidirectional communication with neighboring cells in subadjacent tissues (*Daneshgari et al., 2009*). Bladder urothelial abnormalities may impact lower urinary tract function by altering the release of mediators and sensory fiber excitability in the bladder. Also, because many of these urothelial functions may be altered in diabetes cases, defects in urothelial cells may in part underlie changes such as detrusor instability and/or changes in bladder capacity (*Hanna-Mitchell et al., 2013*).