

Metallic Nanoparticles as an Anti-proliferative Activity Against Human Hepatocellular Carcinoma

(In-Vitro study)

Thesis

Submitted to Women's College, Ain Shams University For M. Sc. Degree in Science

By Hoda Emad El-Din Yahya Zoology Department

Under Supervision

Prof. Dr: Rokaya Hussien Ahmed Shalaby

Professor of Molecular Biology and Cytogenetics
Zoology Department
Women's College
Ain Shams University

Prof. Dr: Samah Ali Loutfy

Professor of Virology and Immunology Cancer Biology Department National Cancer Institute Cairo University

Dr. Mona Bakr Mohamed

Assistant Professor of photochemistry and photobiology National Institute of Laser Enhanced Science NILES Cairo University

APPROVAL SHEET

Name:

Hoda Emad El-Din Yahya

Scientific Degree:

Master of Science degree (M.Sc.)

Title:

Metallic Nanoparticles as an Anti-proliferative Activity Against Human Hepatocellular Carcinoma (In-Vitro study)

Supervisors

Prof. Dr: Rokaya Hussien Ahmed Shalaby

Professor of Molecular Biology and Cytogenetics Zoology Department Women's College – Ain Shams University Prof. Dr: Samah Ali Loutfy

Professor of Virology and Immunology Cancer Biology Department National Cancer Institute – Cairo University

Dr. Mona Bakr Mohamed

Assistant Professor of photochemistry and photobiology National Institute of Laser Enhanced Science NILES – Cairo University

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor **Prof. Rokaya Hussien Ahmad Shalaby**, for the continuous support of my M. Sc. study and related research, for her patience, motivation, and encouragement. Her guidance helped me in all the time of research and writing of this thesis. Without her precious support it would not be possible to conduct this study.

I must also extend my deepest appreciation to **Prof.**Samah Ali Loutfy for introducing me to the topic and provided me an opportunity to be a member of her team. Her insightful comments and immense knowledge, but also for the hard question which incentive me to widen my research from various perspectives. I could not have imagined having a better guidance, advisor and mentor for my M. Sc. study. I have also to thank all **Dr. Samah's** team members in NCI and in NILES institute for their help and support.

My sincere thanks also go to **Dr.Mona Bakr**Mohamed, who provided me an opportunity to join her
team, and gave me the chance to access to the laboratory
and research facilities, also for her support.

I would like to thank my loved ones, who have supported me spiritually throughout my life, my mother, my uncles and my brother. I will be grateful forever for your love.

Last but not the least, I would like to express my deepest emotional grateful and love for the **spirit of my** father and my grandfather.

ABSTRACT

We aim to evaluate cytotoxic effect of gold and silver metallic nanoparticles (AuNPs & AgNPs) on human cucasian hepatocellular carcinoma cell line model (HepG2) and their possible antiproliferative activity. This new class of engineered nanoparticles with desired physicochemical properties can be applied as new therapeutic approaches against human liver cancer disease. HepG2 was used as a model of human liver cancer cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on HepG2 cells were followed by colorimetric SRB and neutral red cell viability assays. Further investigation of cytotoxic effect of our nanomaterials were further investigated on a cellular and molecular level using cell cycle analysis, DNA fragmentation assay and some apoptotic genes expression on a level of mRNA for p53, Bak, Bax, Bcl2 and β actin was served as housekeeping gene. Treatment of HepG-2 with different concentrations of 35 nm diameter of AuNPs did not show alteration of cell morphology after 24 h of cell exposure. Such metallic nanoparticles did not reveal vigorous toxic effect at concentration up to 100 µM after 48 h of cell exposure. Cellular evaluation of AuNPs revealed progressive accumulation at G0/G1 and at G2/M phases of cell cycle. The expression of mRNA of P53, Bak, Bax, BC12 without expression of mRNA of caspase 3 gene was observed in treated cells with AuNPs suggesting involvement of intrinsic apoptotic caspase independent pathway. Treatment of HepG2 with different concentrations of 22 nm diameter of AgNPs did not show alteration of cell morphology after 24 h of

cell exposure. Also, cytotoxicity results revealed that; viability was 58% after cell treatment with 10 µM and decreased to 40.78% after treatment of cells with 1000 µM for 48 h. Cellular evaluation of AgNPs revealed progressive accumulation in the S phase of the cell cycle correlating with decreased number of cells in the G2/M phase followed by cellular DNA fragmentation. Extensive evaluation of cytotoxic effect of AgNPs showed mRNA apoptotic genes expression (P53, Bak, Bax, Bcl2) without expression of mRNA of caspase 3 gene which was expressed in untreated cells, same as the results were obtained by treating cells with AuNPs, suggesting intrinsic apoptotic casepase independent mechanism but may be induced by different molecules than that exerted by AuNPs. Our engineered gold nanoparticles (35 nm) and silver nanoparticles at size of 22nm showed genotoxic effect on human liver carcinoma cell line HepG-2 through intrinsic apoptotic caspase independent mechanisms. Further quantitative analysis and investigation for the impact of time on genotoxic effect are required before reaching a final conclusion and starting in vivo assays.

Key words: Metallic nanoparticles, anti-proliferative activity, HepG2, apoptotic genes expression

CONTENTS

Subject	Page
INTRODUCTION.	. 1
AIM OF THE WORK	
REVIEW OF LITERATURE.	7
1. Liver cancer	7
1.1. Geographical distribution of liver cancer	7
1.2. HCV influence on HCC	8
1.3. Treatment of liver cancer.	
2. Nanoparticles	. 13
2.1. Distribution and Accumulation of Nanoparticles	15
2.2. Tumor vasculature	16
2.3. Enhanced permeability and retention effect (EPR).	17
2.4. Active and passive targeting of nanoparticles.	19
2.5. Cellular uptake mechanisms.	22
2.6. Toxic effects of nanoparticles.	22
2.7. Factors affecting the behavior of nanoparticles.	24
3. Gold Nanoparticle	
3.1. Biodistribution and accumulation of gold nanoparticles in living	
systems	. 28
3.2. Cellular distribution of gold nanoparticles	
3.3. Cytotoxic factors of gold nanoparticles	
3.3.1. Cell type influence in cytotoxicity	
3.3.2. The ligand structural influence on gold cytotoxicity	
3.3.3. Size dependent cytotoxicity of gold nanoparticles	
3.3.4. <i>In-vivo</i> Size dependent cytotoxicity of gold nanoparticles	37
3.3.5. Surface charge of AuNP influence on cytotoxicity	38
3.3.6. Concentration dependent cytotoxicity	41
3.3.7. Cytotoxic mechanisms of gold nanoparticles	42
3.3.7.1. DNA Damage	42
3.3.7.2. Production of reactive oxygen spices	42
3.3.7.3. Interacting with cellular microtubules	. 43
4. Silver nanoparticles	
4.1. Biodistribution and accumulation of silver nanoparticles in living	
systems	46
4.1.1. Intracellular distribution and accumulation of silver	
nanoparticles	49
4.2. Cytotoxicity of silver nanoparticles	49
4.2.1. Size influence on the cytotoxicity of silver nanoparticles	
4.2.2. Surface charge influence on cytotoxicity	
4.2.3. Cell type dependent cytotoxicity of silver nanoparticles	53
4.2.4. Dose dependent cytotoxicity	
4.3. Mechanism of silver cytotoxicity	
4.3.1. Production of Reactive Oxygen Species.	
4.3.2. Impairment mitochondrial function.	
4.3.3. Intracellular calcium (Ca2+) fluctuations.	
4.3.4. Release of silver ions.	
4.3.5. DNA fragmentation.	
4.3.6. Induction of ER stress.	

5. Apoptosis	59
5.1. Apoptosis signal pathway	60
5.1.1. Extrinsic Signal Pathway	61
5.1.2. Intrinsic pathway	62
5.2. Apoptotic Involved Proteins	64
5.2.1. The Role of P53	64
5.2.1.1. Biological Function of p53	66
5.2.2. Bcl2 family proteins	68
5.2.2.1. BAX	70
5.2.3. Casepase	72
5.2.3.1. Caspase Dependent Apoptotic Pathway	72
5.2.3.2. Caspase Independent Apoptotic Pathway	73
6. Apoptotic Effect of Nanoparticle.	75
6.1. Gold Nanoparticles.	75
6.2. Silver Nanoparticles.	76
6.3. Nickel Nanoparticles.	77
6.4. Silica Nanoparticles.	78
6.5. Iron Nanoparticles.	79
MATERIALS AND METHODS	81
I- Preparation and Characterization of Nanoparticles	81
1. Preparation of Metallic Nanoparticles	81
1.1. Preparation of Gold Nanoparticles	81
1.2. Preparation of Silver Nanoparticles	81
2. Characterization of gold and silver nanoparticles	82
2.1. UV-Visible Absorption Spectroscopy	82
2.2. Transmission Electron Microscopy (TEM)	82
2.3. Zeta potential measurement	85
Π-Cell Culture	86
1. Cell line	86
1.1. HepG2 cell line	86
1.2. WISH cell line	86
2. Cell Culture Technique	86
2.1. Cell Passaging Equipment	87
2.2.Counting of the viable cells	88
2.3.Cryo Preservation of Cells.	88
2.4.Procedure.	88
2.5.Retrieving of cells.	89
3. Cellular Uptake of metallic nanoparticles.	90
3.1.Principle.	90
3.2. Procedure.	90
4. Cell Treatment, Morphological Studies and Cytotoxicity Assay	91
4.1. Seeding of plate	91
4.2.Cytotoxicity assay.	92
4.2.1. Measurement of Cell proliferation by SRB assay	92
4.2.1.1.Principle.	92
4.2.1.2. Procedure	92
4.2.1.3.Calculation.	93
4.2.2. Neutral red (NR) (3-amino-7-dimethylamino-2-methyl-	
phenazine hydrochloride) assay	93
4.2.2.1.Neutral red assay Principle	94

	4.2.2.2.Chemicals and reagents.	95
	4.2.2.3. Reagent setup	95
	4.2.2.4. Assay procedure	96
5.	Flow cytometric analysis	97
	5.1. Principle	98
	5.2. Procedure.	98
6.	Cell death assessment by DNA fragmentation assay	99
	6.1.Principle	99
	6.2.Procedure	99
7.	Detection of cellular apoptotic genes expression by One-Step Reverse	
	transcription polymerase chain reaction (RT-PCR)	101
	7.1. Isolation of cellular RNA	102
	7.2. Amplification of cellular RNA	102
	7.3. Detection of PCR product by agarose gel electrophoresis	103
8.	Statistical analysis.	103
9.	·	104
RESU	ILTS	106
I. Nan	oparticles preparation and Characterization	106
	Preparation and characterization of gold nanoparticles	106
	1.A. Ultra violet- visible spectroscope (UV-Vis spectroscope) result	107
	1.B. Transmission electron microscope for AuNPs	107
	1.C. Zeta size measurement of AuNPs.	108
	1.D. Zeta potential of gold nanoparticles	109
2.	Preparation of silver nanoparticles	110
	2.A. The UV-Vis spectrum of silver nanoparticles	110
	2.B. TEM of silver nanoparticles.	111
	2.C. Zeta size measurement of AgNPs.	111
	2.D. Zeta potential of silver nanoparticles	112
3.	Morphological studies	113
	3.1. Inverted microscopy results	113
	3.1.1. HepG2 untreated cells (control)	113
	3.1.2. Treatment of HepG2 with AuNPs	114
	3.1.3. Treatment of HepG2 with silver nanoparticles	115
	3.2. In Vitro localizing cellular uptake of NPs by TEM	116
	3.2.1. TEM image of untreated HepG2	116
	3.2.2. AuNPs treated HepG2	117
	3.2.3. TEM images of AgNPs treated HepG2	119
4.	Cytotoxicity results.	121
	4.1. Effect of AuNPs on WISH cells.	121
	4.2. Effect of AuNPs on HepG2 cells.	121
	4.3. Effect of AgNPs on WISH cells.	123
	4.4. Effect of AgNPs on HepG2 cells.	124
	4.5. Statistical results for cellular toxicity.	126
	4.5.1. Effect of AuNPs and AgNPs on Wish cells.	126
	4.5.2. Effect of metal nanoparticles on HepG2 cells	127
5.	Flowcytometry results.	129
	5.1. Flowcytometry results of control HepG2 cells.	129
	5.2.Flow cytometry results of AuNPs treated HepG2 cell line	129
	5.3.Flow cytometry results of AgNPs treated HepG2 cell line	130
6.	DNA fragmentation results (single-cell gel electrophoresis)	132

6.1. DNA fragmentation assay after treatment of cells with AuNPs	133
6.2. DNA fragmentation assay after treatment of cells with AgNPs	134
7. Reverse transcription polymerase chain reaction (RT-PCR) Results	135
7.1. RNA expression of β actin.	136
7.2. RNA expression of BCL2.	136
7.3. RNA Expression of P53.	137
7.4. RNA expression for BAK in HepG2 treated with High	
Concentration of AuNPs and AgNPs.	137
7.5. RNA Expression of BAX in HepG2 treated with High	
Concentration of AuNPs and AgNPs.	138
7.6. RNA Expression of Caspase 3.	138
DISCUSSION.	139
RECOMMENDATIONS	159
SUMMARY	161
CONCLUSION.	165
REFERENCES.	166
ARABIC SUMMARY	1

LIST OF ABBREVIATIONS

11-MUA 11-mercaptoundecanoic acid	
2(Bcl-w) Bcl-2-like protein 2	
A2780 cells Human ovarian cancer cells	
A549 Human carcinoma lung cell line	
Ag (+) silver ions	
Ag^+ Silver ion	
AgNPs Silver nanoparticles	
AIF Apoptosis-inducing factor	
Apaf-1 Apoptotic protease activating factor 1	
ASM Human airway smooth muscle cells	
ATCC American Type Culture Collection	
ATP Adenosine triphosphate	
Au(0) Gold nanoparticles	
nanoparticle	
Au1+ Aurous ion	
Au1+ Aurous ron Au3+ Auric ion	
1	
AuNP Gold nanoparticles	
BAD BCL2-Associated Agonist of Cell Death	
BAK Bcl-2 homologous antagonist/killer	
Balb/3T3 Mouse fibroblasts cells	
BAX Bcl2-associated X protein	
Bcl-2 B-cell lymphoma 2	
BCL-XL B-cell lymphoma-extra large	
BEAS-2B cell Normal human lung cell line	
BECs Human bronchial epithelial cells	
BH domains Bcl-2 homology (BH1–4) domains	
BH1–4 Bcl-2 homology (1–4) domains	
BHK21 Baby hamster kidney	
BID BH3-interacting domain death agonist	
BOK Bcl-2 related ovarian killer	
bp Base pair	
BPEI-AgNPs Branched polyethyleneimine coated AgNI	Ps
C17.2 Neural progenitor cells	
Caco2 Human colorectal adenocarcinoma cell lin	ie
Caspase Cysteine-aspartic proteases	
CCDs Charge-coupled devices camera	
CD95 Cluster of differentiation 95 (FasR)	
Cdks Cyclin-dependent kinases	
cDNA Complementary DNA	
Ch Chromatin	
· · · · · · · · · · · · · · · · · · ·	
CHK-1 Checkpoint kinase 1	
CHK-1 Checkpoint kinase 1 CHK-2 Checkpoint kinase 2	
CHK-2 Checkpoint kinase 2	

COOH Carboxylic acid CP70 Human ovarian cancer cells CT Computerized tomography scan CTAB Cetyltrimethylammonium bromide Cyt-c Cytochrome c Cyto Cytoplasme d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
CT Computerized tomography scan CTAB Cetyltrimethylammonium bromide Cyt-c Cytochrome c Cyto Cytoplasme d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
CTAB Cetyltrimethylammonium bromide Cyt-c Cytochrome c Cyto Cytoplasme d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
Cyto Cytoplasme d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
Cyto Cytoplasme d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
d-ATP Deoxyadenosine triphosphate dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
dATP/ATP deoxyadenosine triphosphate/adenosine triphosphate DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
DD Death Domains DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
DFF DNA fragmentation factor DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
DISC Death-inducing signal complex DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
DNA Deoxyribonucleic acid dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
dNTPs Deoxynucleotide dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
dsDNA Double stranded DNA DSV Digital Streaming Video DU145 Human prostate cancer cells
DSV Digital Streaming Video DU145 Human prostate cancer cells
DU145 Human prostate cancer cells
1
EC50 Half maximal effective concentration
EDTA Ethylenediaminetetraacetic acid
ENDOG Endonuclease G
EPR Enhanced permeability and retention
ER Endoplasmic Reticulum
FADD Fas associated death domain
FasL Fas ligand
FDA Food and Drug Administration
G1 Gap 1 phase of cell cycle
G2 Gap 2 phase of cell cycle
GF Growth factor
Glu-GNPs Glucose-capped GNPs
GNP Gold nanoparticles
GNPs Gold nanoparticles
GNRs Gold nano rods
GNS Gold nanostar
GSH Glutathione
H2O2 Hydrogen peroxide
HaCaT Immortal Human keratinocyte line
HAT Histone acetyltransferase
HAuCl4 Chloroauric acid
HAuCl4 Tetra chloroauric (III) acid
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCT116 Colon cancer cell line
HCV Hepatitis C virus
HDF Human dermal fibroblast normal cells
HeLa cell Human epithelial malignant cells, derived from a cervical carcinoma
HepG2 Human hepatoma cell line
hMSC Human mesenchymal stem cells
HRTEM High-resolution transmission electron microscope
HT29 Human colon adenocarcinoma cell lines

i.v.	Intravenous
IARC	International Agency for Research on Cancer
IC50	The half maximal inhibitory concentration
IL1-beta	Interleukin-1 beta
IL-6	Interleukin 6
IMR-90	Normal human lung fibroblast cells
IONPs	Iron oxide (Fe ₃ O ₄) nanoparticles
IP IP	Intraperitoneal
IR	Infrared
IV	Intravenously
K562	Human chronic myelocytic leukaemia
KCl	Potassium chloride
KCs	Kupffer cells
kd	Kilo Dalton
kDa	Kilo Dalton
kV	Kilovolt
L132	L132 lung epithelial cells
LSPR	Localized surface plasmon resonance
M	Mitotic phase of cell cycle
M	Mean
MCF-7	Breast cancer cell line
MDA	Malondialdehyde
MDA-MB-	Breast cancer cells
231	
MDM2	Muring double minute 2
MOMP	Mitochondrial outer membrane permeabilization
MPS	Mononuclear phagocytic system
MRC-5 cells	Human fetal lung fibroblast cells
mRNA	Messenger ribonucleic acid
MTs	Microtubules
MTT	3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide
N	Nucleus
NCCD	Nomenclature Committee on Cell Death
NCRP	National Cancer Registry Program
NLS	Nuclear localization signal
NM	Nuclear membrane
Noxa	Latin for damage, pro-apoptotic member of the Bcl-2 protein family
NPs	Nanoparticles
NR	Neutral red
NRC	National Research Center
NRs	Nanorods
OD	Optical density
OM	Outer mitochondrial membrane
OMM	Outer mitochondrial membrane
P21	Cyclin-dependent kinase inhibitor
p21CIP1	P21(Cdk-interacting protein)
p21WAF1	P21 (wild-type p53-activated fragment 1)
P53	Tumor suppressor p53
133	Tumor suppressor paa

D 4 3 5 4 3 5	D 1 11 1 1 1 1
PAMAM	Polyamidoamine dendrimers
PARP-1	Poly (ADP-ribose) polymerase-1
PARP-1	Poly- ADP-ribose polymerase 1
PAT	Parenteral anti-schistosomal therapy
PBL	Peripheral blood lymphocytes
PBMC	Peripheral blood mononuclear cells
PBS	Phosphate-buffered saline
PC12	Rat pheochromocytoma cell
PCD	Programmed cell death
PCR	Polymerase chain reaction
pdi	Polydispersity index
PEG	Poly ethylene glycol
PI	Propidium iodide
PMN	Phagocytic mononuclear cell
PTP	Permeability transition pore
PUMA	P53 upregulated modulator of apoptosis
PVP	Polyvinylpyrrolidone
RAW264.7	Mouse macrophage-like cell line
RBC	Red blood corpuscle
RER	Rough endoplasmic reticulum
RES	Reticuloendothelial system
RME	Receptor mediated endocytosis
ROS	Reactive oxygen species
RPMI	Roswell Park Memorial Institute
RT –PCR	
S S	Reverse transcription polymerase chain reaction Synthesis phase of cell cycle
SD	Standard Deviation
SEER	
	US Surveillance, Epidemiology, and End Results
SGC 7901	Human gastric cancer cells line
SiO(2) NPs	Silica nanoparticles
smARF	Small ADP ribosylation factor
SOD	Superoxide dismutase
SRB	Sulforhodamine B
TAE	Tris-Acetate buffer
tBID	Truncated BID
T-cells	T lymphocytes
TEM	Transmission electron microscopy
TGF-b	Transforming growth factor b
TGN	Trans-Golgi network
THP-1	Derived human macrophages cell line
TJs	Tight junctions
TLR	Toll-like receptor
TNF	Tumor necrosis factor
TNFR	Tumor necrosis factor receptor
TNFα	Tumor necrosis factor alpha
TRADD	Tumor necrosis factor receptor type 1-associated DEATH domain
	protein
TRAIL	Tumor necrosis factor-related apoptosis-inducing ligand

U251	human glioblastoma cells
UVB	Ultraviolet B
WBC	White blood cells
WHO	World Health Organization
ZFL	Zebrafish liver cells
ZS	Zetasizer
ΔΨm	Mitochondrial transmembrane potential