Electrophysiological and Psychometric Assessment of Cognitive Functions in Normal Aging

A Thesis submitted for fulfillment of MD in Clinical Neurophysiology <u>Investigated by</u>

> Alshaimaa Sobhi Khalil M.Sc.

Supervised by

Prof. Dr. Ann Ali Abdel Kader

Professor & Head of Clinical Neurophysiology

Cairo University

Prof. Dr. Ebtesam Mohammad Fahmy
Professor of Neurology
Cairo University

Prof. Dr. Ayatullah Farouk Ahmad
Professor of Clinical Neurophysiology
Cairo University

Dr. Amira Ahmad Labib

Lecturer of Clinical Neurophysiology

Cairo University

بسم الله الرحمن الرحيم

إنا إلا ما علمتنا إلا ما علمتنا

إنك أنت العليم الحكيم

صدق الله العظيم آية 32- سورة البقرة

ACKNOWLEDGEMENT

First, and foremost, all thanks and gratitude to *ALLAH*, most gracious and merciful.

- *Dr. Ann Ali Abdel Kader*, Professor & Head of Clinical Neurophysiology, Faculty of Medicine, Cairo University, our great professor who guided me throughout this study. I'm thankful for your time and effort.
- *Dr. Ebtessam Mohammad Fahmy*, Professor of Neurology, Faculty of Medicine, Cairo University, I am grateful for your support, guidance and valuable criticism. Thanks a lot for your respected effort, time and teaching.
- *Dr. Ayatullah Farouk Ahmad*, Professor of Clinical Neurophysiology, Faculty of Medicine, Cairo University, my passionate gratitude for enthusiastic cooperation, assistance and help. Thanks for your time, support and effort.
- *Dr. Omnia Raafat*, Professor of Psychiatry, Faculty of Medicine, Cairo University, thank you for the support, time and assistance.
- *Dr. Amira Ahmad Labib*, Lecturer of Clinical Neurophysiology, Faculty of Medicine, Cairo University, my sincere thanks to you for helping throughout the study. Thank you for your time and effort.

All staff members and colleagues in the Clinical Neurophysiology unit and in the Neurology Department, thanks for your help and support.

Technicians and workers of the Clinical Neurophysiology unit, I must thank you for your great help and effort throughout this work.

My family and friends, thanks a lot for supporting me and standing by me in my time of need, special thanks to my parents who offered their best to make us happily satisfied, my siblings whom I truly love and thank and my aunt who was always there for me.

ABSTRACT

Aging and Age-related Changes (ARCs) refer to the declines in component biologic processes occurring with senescence that result in impaired brain structure, cognitive performance and behavior. In the present study we aimed to assess cognitive functions in normal elderly subjects using psychometric cognitive assessment scales and electrophysiological studies including power of brain activity and late cortical responses.

<u>Method:</u> Forty seven healthy elderly subjects were assessed with electrophysiological studies and psychometric scales. Electrophysiological studies include P300 and CNV studies and QEEG recording.

<u>Results:</u> The results of P300 showed a significant positive correlation was found between age and reaction time. A significant negative correlation was found between reaction time and the total score of the performance scale. The results of CNV revealed a significant negative correlation was noted between latency of N2 and total score of the verbal scale. Regarding relative power of EEG frequencies, a significant positive correlation was found between relative power alpha frequency and the total score of performance scale. No significant correlation was revealed between P300, CNV parameters and relative power of EEG frequencies and scores of WMS subtests and parameters of WCST.

<u>Conclusion:</u> Results suggest that the psychiatric scales do not provide a substitute for electro-physiological tests in evaluating the cognitive changes which occur with normal aging. Also, it revealed that P300 parameters are more sensitive than CNV parameters in detecting such changes.

Key words: cognitive, electrophysiological, psychometric, aging.

CONTENTS

List of abbreviations	(I)
List of tables	(IV)
List of figures	(VI)
Introduction and aim of work	(1)
Review of literature	
• Chapter (1): Theories of Normal Aging.	(2)
Chapter (2): Age-related Cognitive Changes	(11)
• Chapter (3): Cognitive Event-related potentials and Aging	(18)
Chapter (4): Quantitative EEG and Aging	(34)
Subjects and methods	(45)
Results	(57)
Discussion	(89)
Summary	(96)
Conclusion.	(98)
Recommendations	(99)
References	(100)
Appendix	
Arabic summary	

List of ABBREVIATIONS

AD Alzheimer's disease

ADHD Attention deficit hyperactivity disorder

ADLs Activities of daily living

AIDS Auto-Immune Deficiency Syndrome

AP Absolute power

ARCs Age-related Changes

ATP Adenosine triphosphate

BOLD Blood oxygenation level–dependent

CLOX Clock Drawing Task

CNV Contingent negative variation

Cr Creatine

CT Computed tomography

dB Decibel

DLPFC Dorsolateral prefrontal cortex

DNA Deoxyribonucleic acid

EEG Electroencephalogram

E-wave Expectancy wave

EXIT-25 Executive Interview

fMRI Functional magnetic resonance imaging

Gln Glutamine

Glu Glutamate

List of ABBREVIATIONS (continued)

HPA Hypothalamic-pituitary-adrenal

5-HT 5-hydroxytryptamine

Hz Hertz

IQ Intelligence Quotient

ISIs Inter-stimulus intervals

Khz Kilo-Hertz

LC Locus coeruleus

MEG Magnetoencephalography

mm Millimeter

MMN Mismatch Negativity

MMSE Mini-Mental State Examination

MRI Magnetic resonance imaging

msec Milliseconds

mtDNA Mitochondrial DNA

μV Microvolts

NAA N-acetyl aspartate

NBM Nucleus Basalis of Meynert

NE Norepinephrine

O-wave Orienting wave

OXPHOS Oxidative phosphorylation

PET Positron emission tomography

PFC Prefrontal cortex

List of ABBREVIATIONS (continued)

PLEDs Periodic lateralized epileptiform discharges

QEEG Quantitative Electroencephalography

RMS Root-mean-square

RP Relative power

SD Standard deviation

sLORETA Standardized Low Resolution Electromagnetic

Tomography

VTA Ventral tegmental area

WAIS Wechsler Adult Intelligence Scale

WCST Wisconsin Card Sorting Test

WMS Wechsler Memory Scale

List of TABLES

Number of table	Title of table	Page
1	Latency and amplitude of P300 and reaction time in the study population	57
2	Latency and amplitude of CNV parameters in the study population.	59
3	Values of different relative powers of frequencies of Brain Mapping in the study population	60
4	Minimum, maximum and mean scores of WIS subtests among the study population	61
5	Minimum, maximum and mean scores of WMS subtest among the study population.	61
6	Minimum, maximum and mean scores of WCST parameters among the study population	62
7	Comparison of mean P300 parameters between male and female elderly subjects	64
8	Comparison of mean CNV parameters between males and females elderly subjects	66
9	Comparison of relative power of frequencies of EEG between male and female elderly subjects.	69
10	Comparison of Verbal scale subtests of WIS between male and female elderly subjects	71
11	Comparison of Performance scale subtests of WIS between male and female elderly subjects	72
12	Comparison of WMS subtests between male and female elderly subjects	73
13	Comparison of WCST parameters between males and female elderly subjects	74

List of TABLES(continued)

14	Comparison between P300 latency and amplitude recorded from different regions	75
15	Correlation of P300 parameters with age	76
16	Correlation of CNV parameters with age	77
17	Correlation of different relative power of EEG recorded from various regions with age	78
18	Correlation of ratio recorded from frontal, temporal and occipital regions with age	79
19.a & b	Correlation of WIS subtests scores with age	79
20	Correlation of WMS subtests scores and age	80
21	Correlation of WCST parameters with age	80
22.a & b	Correlation of latency of P300 with WIS subtests scores	80-81
23.a & b	Correlation of amplitude of P300 with WIS subtests scores.	81
24.a & b	Correlation of reaction time with WIS subtests scores	81
25.a,b&c	Correlation of P300 parameters with WMS subtests scores	82-83
26.a,b&c	Correlation of P300 parameters with parameters of WCST	83
27.a & b	Correlation of CNV parameters with WIS subtests scores	84
28	Correlation of CNV parameters with WMS subtests scores	85
29	Correlation of CNV parameters with parameters of WCST	86
30	Correlation of ratio with parameters of WMS	87

List of FIGURES

Number of figure	Title of figure	Page
	Schematic representation of the hypothetical pathways that	
1	may lead to mutation accumulation as a possible proximate	4
	cause of aging.	
2	Schematic illustration of the P300 context-updating model	20
3	P300 at different recording sites with rare and standard	25
3	stimuli	
4	Schematic representation of brain activation patterns	26
4	underlying P3a and P3b generation	
5	Components of CNV	31
6	Trace shows P300 wave in a 62 years male subject.	58
7	Trace shows P300 wave in a 68 years male subject	58
8	CNV waves in a female subject aged 64 years	59
9	Trace showing CNV waves in a male subject aged 70 years	59
10	Comparison of mean P300 latencies between male and	65
10	female elderly subjects	
11	Comparison of mean P300 amplitudes between male and	65
11	female elderly subjects	US
12	Comparison of mean CNV latencies between male and	67
12	female elderly subjects	
13	Comparison of mean CNV amplitudes between male and	67
13	female elderly subjects	
14	Comparison of relative power of frequencies of EEG	70
17	between male and female elderly subjects.	70
15	Comparison of Verbal scale of WIS subtests between male	71
	and female elderly subjects	
16	Comparison of Performance scale subtests of WIS between	72
	male and female elderly subjects	
17	Correlation of age and reaction time	76
18	Correlation of age and CNV parameters	77
19	Correlation of age and relative power of theta frequency	78
20	Correlation of reaction time and the performance scale & its	82
	subtests	
21	Correlation of N2 latency and verbal scale subtests	85

INTRODUCTION and AIM OF WORK

INTRODUCTION

The aging of the world's population has profound implications for medical care and health care systems. Aging spares no organ or system, and in due course affects everything, from cell to thought (**Raz and Rodrigue, 2006**).

There is a generalized, proportional decline in mental processing speed among elderly adults that affects all elements of mentation equally (**Bashore** *et al.*, 1989). Numerous investigators have reported changes in the pattern of brain electrical activity (electroencephalogram, EEG) associated with aging and noted a relationship between specific changes in the EEG and clinical deterioration (**Prichep** *et al.*, 2006).

The P300 event-related potential (ERP) is thought to reflect neuroelectric activity related to cognitive processes such as attention allocation and activation of immediate memory. However, studies have provided evidence that the P300 also is influenced by biological processes such as fluctuations in the arousal state of subjects (**Polich and Kok, 1995**).

The contingent negative variation (CNV) can be recorded in the serial conditions of habituation—reinforcement—motor extinction (free attention)—reinforcement—motor extinction (forced attention). The mean CNV amplitude under the reinforcement and motor extinction (free attention) conditions decreases prominently with aging (Verleger et al., 1999).

AIM OF WORK

To assess cognitive functions in normal elderly subjects using psychometric cognitive assessment scales and electrophysiological studies including power of brain activity and late cortical responses.

REVIEW OF LITERATURE

Chapter 1

Theories of Normal Aging