The Role of Multidetector Computed Tomography Urography in the Diagnosis and Staging of Urothelial Malignancy

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By
Mohammad Zakaria Mohammad Fadel
M.B., B.Ch, 2005
Ain Shams University

Under The Supervision Of

Dr. Sherine Kadry Amin

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

Dr.Dalia Zaki Zidan

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

> Faculty of Medicine, Ain Shams University 2008

The Role of Multidetector Computed Tomography Urography in the Diagnosis and Staging of Urothelial Malignancy

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Mohammad Zakaria Mohammad Fadel

M.B., B.Ch, 2005

Ain Shams University

Under The Supervision Of

Dr. Sherine Kadry Amin

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

Dr.Dalia Zaki Zidan

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

Faculty of Medicine, Ain Shams University 2008

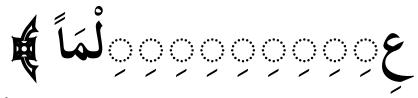
دورالأشعة المقطعية المتعددة المقاطع في تشخيص وتحديد المراحل السرطانية لسرطان النسيج الطلائي المبطن للجِهاز البَوْلي

دراسة مقدمة من الطبيب محمد زكريا محمد محمد فاضل بكالوريوس الطب والجراحة العامَّة – 2005 جامعة عين شمس توطئة للحصول على درجة الماجيستير في الأشعة التشخيصيَّة

تحت إشراف

الدكتور / شيرين قدري أمين

أستاذ مساعد بقسم الأشعة التشخيصيَّة كلية الطب - جامعة عين شمس


الدكتور / داليا زكي زيدان

أستاذ مساعد بقسم الأشعة التشخيصيَّة كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2008 بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيمِ

وَقُل رَّبِّ زِدْيِي

{ 114 سورة طه }

صَدَقَ اللهُ العَظِيمُ

ACKNOWLEDGEMENT

First and foremost, thanks to Allah for helping me in achieving this work and every other work in my life.

I wish to express my highest and respectful appreciation and deepest gratitude to :

Assistant Prof. Dr. Sherine Kadry Amin Assistant Prof. of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her kind supervision, moral support, great efforts in supervising the work and for the valuable suggests and advices.

I wish to extend my warmest appreciation and cardinal thanks to:

Assistant Prof. Dr. Dalia Zaki Zidan, Assistant Prof. of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her persistent effort, valuable guidance and meticulous revision of the work.

Last but not least, I wish to thank all professors, staff members, colleagues and workers in the Department of Radiodiagnosis in Ain Shams University.

Mohammed Zakaria Fadel

Abstract

Mohammed Zakaria Fadel

Urothelial tumours arise in the epithelial lining of the urinary tract and include transitional cell carcinoma (TCC), squamous cell carcinoma, and adenocarcinoma. The vast majority are transitional cell carcinomas (90%).

TCC is 30-50 times more common in the bladder than ureters and renal pelvis. Urothelial carcinoma has a propensity to be multicentric with synchronous and metachronous bladder and upper tract tumors. Hematuria is present in 72% of patients.

Patients with suspected urinary tract disease are often referred for multiple studies such as excretory urography (EU), ultrasound (US), CT or MRI. Multi-examination work-up require much patient effort and are expensive. A single imaging test that comprehensively evaluates the urinary tract has advantages in terms of both convenience and cost.

CT is already widely acknowledged superior to EU and US in its ability to detect and characterize renal masses. The last remaining potential limitation of CT for examination of the urinary tract is its perceived limited accuracy in assessment of the mucosal surfaces of the renal collecting systems and ureters.

Finally, with the advent of multidetector CT, CT became capable of producing a large number of thin section images in a short period of time. As a result, the spatial, temporal, and contrast resolution became sufficient to image the urothelium. CT urography can demonstrate not only urinary tract lumen but also the wall of the urinary tract and its surrounding structures.

Increased volume coverage is combined with thinner slice thickness to obtain better quality volume data sets for workstation analysis, either in 2-D axial, multiplanar reformation (MPR), or three-dimensional (3-D) imaging.

One of the main advantages of Multi detector CT urography (MDCTU) is its ability to display the entire urinary tract, including renal parenchyma, pelvicalyceal systems, ureters, and the bladder using a single non-invasive imaging test, in one breathhold. The alternative imaging studies alone do not offer equivalent coverage. So that , MDCTU became the "core" imaging study for investigation of hematuria as it has the potential to stand alone as a comprehensive "one-step" test for imaging the upper and lower urinary tract.

Multiphasic CT urography offers superior detection of urothelial tumors over EU and US and allows accurate staging of detected lesions at the same examination.

Magnetic resonance urography (MRU) has advantages over MDCTU including the ability to detect early stages of the urothelial tumors (T0a ,Tis) & imaging the pelvicalyceal systems without intravenous iodinated contrast agents using heavily T2 weighted ultrafast sequences. Another advantage of MRU is that the significant radiation dose associated with the other modalities is avoided.

The early detection of TCC is very important for the planning of limited surgical treatment. MDCTU is capable of identifying lesions at an early stage, thereby allowing nephron-sparing surgery.

CONTENTS

- 1. Introduction & Aim of the work.
- 2. Anatomy of the urinary system .
- 3. Pathology of the urothelial malignancy.
- 4. Technique of multidetector computed tomography urography (MDCTU).
- 5. Manifestations of urothelial malignancy in MDCTU.
- 6. Summary & Conclusion.
- 7. References.
- 8. Arabic Summary.

List of Contents

	Page
CHAPTER 1	J
• INTRODUCTION	1
• AIM OF THE WORK	3
CHAPTER 2	
• ANATOMY OF THE URINARY SYSTEM	
- The kidneys	4
- TheUreters	14
- The Urinary bladder	17
• CT ANATOMY	23
CHAPTER 3	23
• PATHOLOGY OF UROTHELIAL MALIGNANCY	
- Introduction	31
- Risk Factors	33
	38
- Incidence and Epidemiolog	38 41
- Pathology	41
- Upper tract TCC	
- TCC of the bladder	43
- Spread	46
- Staging	46
- Clinical presentation	50
- Squamous cell Carcinoma	50
- Adenocarcinoma	54
CHAPTER 4	
TECHNIQUE OF MULTIDETECTOR CT	
UROGRAPHY	
DI	
- Physical principles	57
- Advantages of Multidetector row CT	66
- Disadvantages of Multidetector row CT	67
- Evolution of CTU	68
- Techniques of Axial image CTU	72
- Radiation Considerations	73
- Image Reconstruction and Reformatted Images	74
- Image Review	78

Continued

	Page
CHAPTER 5	
• MANIFESTATIONS OF UROTHELIAL MALIGNANCY IN MULTIDETECTOR CT UROGRAPHY	
	79
Introduction	19
and Ureters in MDCTU - Manifestations of Urothelial Malignancy of the Urinary	80
Bladder in MDCTU	91
- The Advantage of MDCTU over other Imaging Modalities in diagnosis & staging of Urothelial Malignancy	101
- Illustrative Cases	
CHAPTER 6	
• SUMMARY & CONCLUSION	117
CHAPTER 7	
• REFERENCES	119
CHAPTER 8	_,
• ARABIC SUMMARY	

List of Tables

Γable No.	Title	Page
1	TNM definitions of transitional cell carcinoma of the renal pelvis and the ureter	47
2	Staging of TCC of the Bladder	49

List of Figures

	 	
Fig No.	Title	Page
1	The gross anatomy of the kidneys	5
2	Right kidney sectioned in several planes	6
3	The gross and microscopic anatomy of the kidney	8
4	Renal Fascia	12
5	Relationship of kidney to muscles and fascia	13
6	The four surfaces, four ducts, and four angles of the	18
	urinary bladder	
7	MDCTU 3D-VR during excretory phase	23
	demonstrates normal opacification of the collecting	
	systems, ureters and the urinary bladder	
8	Transverse section of the left renal space	24
9	Contrast-enhanced phases of the kidney on MDCT	26
10	Transverse excretory phase MDCT urographic	27
	images of the ureter	
11	Transverse MDCT urographic images of the urinary	28
4.0	bladder	
12	Normal CT anatomy , Axial view of 3D VR	29
	demonstrate the renal arteries & renal veins,	
	coronal CT angiogram demonstrate the renal	
40	arteries	45
13	Urothelial tumors of the urinary bladder	45
14	The stages of tumor invasion in bladder cancer	48
15	Squamous cell carcinoma associated with schistosomiasis	53
16	Adenocarcinoma involving the bladder wall with	56
47	large lakes of mucin	F0
17	Three different types of computed tomographic	59
18	scanners and how they work	61
10	CT gantry with an <u>x-ray</u> tube and detectors for a	01
19	<u>single</u> -section scanner and a multisection scanner Equal-width and unequal-width detector array	62
19	designs.	02
20	4-channel multi–detector row CT system	63
21	The coverage for multisection CT can be eight times	65
<u> </u>	longer than for single-section helical CT at the same	0.5
	pitch and section thickness	
22	With SSCT to scan the same volume covered by	65
	i iii. 300 i to codii tiio odiiio voidiilo covolod by	

	MSCT in the same time, one must increase the pitch	
	or increase the slice thickness	
23	Isotropic and anisotropic data sets	67
24	MSCT scan showing different phases of renal	72
	enhancement	
25	Image post processing	77
26	TCC thickening of the ureter	81
27	TCC in proximal ureter with obstruction	82
28	TCC expanding kidney. Infiltrative tumor diffusely	83
	expands the kidney with minimal disruption of the	
	cortical margin	
29	Renal TCC in a 53-year-old man. Axial	83
	nephrographic phase CT scan shows diffuse tumor	
	infiltration of the left kidney with preservation of its	
- 00	reniform contour	0.4
30	Renal pelvis TCC with stippled calcification	84
31	TCC filling defect in renal pelvis. On nephrographic	85
	phase CT, a hypodense-filling defect expands the	
00	left renal pelvis	00
32	Transitional cell carcinoma of the left kidney in a 67-	88
	year-old man. Axial contrast-enhanced CT scan	
	shows tumor involving the upper pole of the left	
	kidney with diffuse parenchymal infiltration and	
	extension to involve the perinephric tissues and left	
33	psoas muscle Squamous cell carcinoma developing within a	89
33	chronic hydronephrosis	09
34		90
34	contrast enhanced CT scan of adenocarcinoma of	30
	the right kidney	0.4
35	Bladder transitional cell carcinoma	91
36	Axial CT image of the bladder shows an enhancing	92
	area of focal wall thickening (arrow), which	
07	represents urothelial carcinoma	00
37	Virtual cystoscopy showing a solid growth from	93
	the left lateral wall & another case of irregular	
	bladder wall.	
38	Invasive bladder carcinoma	94
39	A large mass arising from the right anterior bladder	95
	wall There is associated stranding of the perivesical	
-	· · · · · · · · · · · · · · · · · · ·	

	fat suggesting invasion and advanced disease	
40	Advanced bladder cancer	97
41	Squamous cell carcinoma in a paraplegic patient	99
42	Adenocarcinoma. Axial CT image shows diffuse	
	thickening of the bladder wall	
43	Urachal adenocarcinoma	100

List of Abbreviations

AJCC American Joint Committee on Cancer

CECT Contrast enhanced computed tomography

CPR..... Curved planar reformat

CT..... Computerized Tomography

CTU..... Computerized Tomography Urography

DNA..... Deoxyribonucleic Acid

EU Execretory urography

HNPCC Hereditary nonpolyposis colon cancer

HU..... Housefield unit

IV..... Intravenous

IVC..... Inferior vena cava

IVU..... Intravenous urogram

MIP..... Maximum intensity projection

MPR..... Multi planar reconstruction

MR..... Magnetic resonance

MRI..... Magnetic resonance imaging

MRU..... Magnetic resonance urography

MSCTU...... Multislice computed tomography urography

mSv..... milliSievert

NECT...... Non enhanced computed tomography

PACS...... Picture archiving and communication system

 $PUNLMP..... \quad \text{papillary urothelial neoplasm of low malignant potential} \\$

RCC...... Renal cell carcinoma
RP..... Retrograde pyelography

SCC..... Squamous cell carcinoma

SCI..... Spinal cord injured

SSD Shaded surface displays

TCC Transitional cell carcinoma

TNM...... Tumor-Node-Metastasis system Classification of

Malignant Tumours

US..... Ultrasound

UUT Upper urinary tract

UUTT Upper urinary tract tumors