Evaluation of the flow diffuser technique: A new modification of brachioaxillary graft for hemodialysis

Thesis

Submitted for partial fulfillment of the MD degree in general surgery

By

Amr El-Saved Mohammed

Supervised by

Prof. Dr: Tarek Ahmed Adel Abdel-Azim (MD)

Professor of General and Vascular Surgery Faculty of Medicine - Ain Shams University

Prof. Dr: Gamal Eldeen Saad Abbas (MD)

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Dr: Magdy Mohammed Saeed El-Sharkawy (MD)

Assistant Professor of General and Nephrology Medicine Faculty of Medicine - Ain Shams University

Dr: Wagih Fawzy Abdel-Malek Fahmey (MD)

Lecturer of General and Vascular Surgery Faculty of Medicine - Ain Shams University

Ain Shams University

تقييم الطريقة الإنتشارية: تقنية جديده لتركيب الوصلات الصناعية بين الشريان الساعدي و الوريد الإبطي للغسيل الكلوي

دراسة توطئه المحول علي حرجة الدكتوراء في المجراحة العامة بواسطة عمر و السبيد محمد

تحت إشراف

الأستاذ الدكتور/ طارق أحمد عادل عبد العظيم استاذ الجراحة العامة و الأوعية الدموية كليه الطب - جامعه عين شمس

الأستاذ الدكتور/ جمال الدين سعد عباس استاذ الجراحة العامة كليه الطب ـ جامعه عين شمس

الدكتور/ مجدي محمد سعيد الشرقاوي استاذ مساعد أمراض الباطنة و الكلي كليه الطب ـ جامعه عين شمس

الدكتور/ وجيه فوزي عبد الملك فهمي مدرس الجراحة العامة و الأوعية الدموية كليه الطب - جامعه عين شمس

جامعه عین شمس ۲۰۰۷

AKNOWLEDGEMENT

Above all and first of all thanks to Allah.

I would like to express my spincere thanks and deepest gratitude to Prof. Dr. **Tarek Ahmad Adel Abd El-Azim** professor of vascular and general surgery faculty of medicine, Ain-Shams university, who suggested the topics and offered me the useful guidance and kind criticism.

I am deeply grateful to Prof. Dr. **Gamal Saad Abbas** professor of general surgery faculty of medicine, Ain-Shams university, for his great help and cooperation.

A lot of thanks to Dr. **Magdey Mohammed El-Sharkawy** assistant professor of nephrology faculty of medicine –Ain Shams university for his generous help and kind assistance

A special note of gratitude goes to Dr. **Wageeh Fahmy Abdel-Malek** lecturer of general and vascular surgery faculty of medicine, Ain-Shams university for his guidance and valuable supervision of this work.

Finally, my deepest thanks to **my family** that gives me a lot and get a little.

Amr El-Sayed Mohammed

Contents

1.	Introduction
۲.	Aim of the work
	Review of literature
	Historical background of renal dialysis £
	Anatomy 7
	Pathology
7	Pathophysiology
•	Vascular access : * •
	Biophysical aspect of graft insertion 71
	Body reaction to the graft material
	Surgical modalities of arteriovenous grafts application Yo
	Complications of arteriovenous grafts
	Prevention&treatment of graft failure 1 • 1
	Illustration of the new technique 117
Ź.	Patients and method110
٥.	Results and statistics 1
7.	Discussion 1£A
٧.	Summery & Conclusion 17V
1.	Recommendations 17.
9.	References
1.	. Arabic summary 1AS

List of abbreviations

Academy ,Academic Acad American A- Am Advanced Adv American journal of medicine AJM American journal of surgery AJS Annual Ann Archive Arch Artificial Artif Arteriosclerosis Arterioscl Arteriovenous AVAcetyl salicylic acid **ASA** Asian strategy **ASAIO** Arteriovenous graft (s) AVG (s) Basic fibroblast growth factor **bFGF Biochemistry Biochem** Biology Biol British journal of medicine **BJM** British journal of surgery BJS Cardiac Card Cardiology Cardiol Cardiovascular Cardiovasc Centimeter cm Circulation Circ Clinical Clin Coagulation Coagul College Colleg **Companey** Com Current Curr Deep venous thrombosis DVT Desoxy ribonucleic acid **DNA** Disease (s) Dis Distal revascularization with interval ligation DRIL Distal venous segments DVS

dip

Dipyridamole

Dialyses outcome quality improvement	DOQI
Three dimensions	۳ D
Electro cardiogram	ECG
Experience	Exp
Endothelial progenitor cells	•
Endovascular	Endovasc
European	Eur
Food and drug administration	FDA
Figure	Fig
Glomerular filtration rate	GFR
Geiger per yard	G/y
Gynecology	Gynecol
Hypertension	Hyperten
Inferior vena cava	IVC
Infection	Infec
Internal	Intern
Intervention	Interv
International	Int
Internist	Inst
Investigation	Inv.
Journal	J
Journal of American medical association	<i>JAMA</i>
Kidney	Kid
Laboratory	Lab
Medicine, Medical	Med
Minute	Min
Milliliter	m/
Mille-par per second	Mpa.s
New York	NY
Nephrology	Nephrol
National	Natl
National institute of health consensus	NIHC
National kidney foundation- department of	NKF-DOQI
quality improvement	
New intimal hyperplasia	NIH
North england journal of medicine	N. Eng. J. Med
Opinions	Opin

Obstetric Obestet Pathology Path Platelet-derived growth factor **PDGF Polytetrafloroethylene** PTFE Particular page PP Proximal vein segment **PVS Procedures** Proc **Prognosis** Prog Expanded polytetrafloroethylene **ePTFE** Quoted from Q Radiology Radiol - R Renal Ren Research Res Scientific Scien Seminar Semin Smooth muscle cell (s) SMC (s) Surgery Surg, S Shear stress SS Society Soc **Thoracic** Th **Thrombosis Thromb** Laser Doppler vibrometry LDV Tumor necrotizing factor **TNF Transplantation Trans** Ultrasound U/s United state **USRDS** United kingdom Uk Vascular Vasc Venous neointimal hyperplasia **VNH**

VEGF

WB

Vascular endothelial growth factor

Warner brothers

List of pictures

fig		page
1	Relations of the brachial artery	٦
۲	Branches of the brachial artery	٨
*	Veins of the upper limb	١.
£	Relations of the axillaly vein	11
0	Intimal hyperplasia after vascular repair	١٤
7	Naked eye picture of intimal hyperplasia in dialysis graft	١٤
V	Microscopic examination of intimal hyperplasia	10
Λ	in vitro model of graft vein anastomosis	1 \
9	flow system (invitro model) of graft vein anastomosis	١٨
1 •	nomenclature of the venous anastomosis of AV graft model	19
11	Diagram of a classical velocity flow in PVS&DVS	۲.
1 "	Diagram of Dean flow construction at PVS	۲.
1 14	sections along AVG show the secondary flow in it	71
1 £	Figure of the separation zone development	77
10	Diagram of axial and loop stress of the venous anastomosis of AV graft model	74
17	Figures of shear stresses	۲ ٤
1 V	Diagram of rheologic stress and the effect of landing angle in venous anastomosis of AV graft model	40
11	Diagram of toe turbulent fluctuation SS	77
19	Figure of coherent forces	77
۲.	Sites of vibration examination	77
71	Curves study of velocity and vibration at different parts of venograft anastomosis	7.7
* *	Vibration intensity increase with axial position	۲۸
۲۳	Diagram of upstream component in venous anastomosis of AVG model	79
Y £	Diagram of downstream effect in venous anastomosis of AVG model	٣.
10	Histopathological exam proves unsteady phenomenon	٣١
77	Diagram of inflammatory cascade at the anastomosis	٣٢
TV	Diagram of morphometric theory at the	٣٣

	anastomosisand SMCs immune localization	
7 1	Diagram of platelets role in mechanotransduction	٣٤
	pathway and its morphological changes	
4 4	SMCs changes cascades in the vessel wall	٣٤
٠.	Diagram of mechanotransduction pathway	30
۱ سو	Human samples of VNIH in PTFE dialysis grafts	3
7	Human samples of venous and arterial neointimal	٣٨
	hyperplasia in PTFE dialysis grafts	
سوسو	Human samples of venous and arterial neointimal	٣9
	hyperplasia in PTFE dialysis grafts	
pr £	Scribner shunt during use	٤١
40	Ramirez shunt	٤٢
7" 7	Thomas shunt during use	٤٢
mv	Mahurkar catheter	٤٣
71	Variants of cuffed catheters	٤٤
pr q	Subcutaneous cuffed catheter	20
٤.	External part of the traditional cuffed catheters	20
£ 1	Diagram of the anatomy of internal jugular vein	٤٦
£Y	Diagram of infraclavicular subclavian puncture	٤٧
	sites	
سر بح	Diagram of supraclavicular subclavian puncture	٤٧
	sites	
£ £	Diagram of femoral vein puncture site	٤٨
20	Diagram of venous cutdown technique	٤٩
£ 7	Brescia- Cimino fistula	01
£ V	Allen's test	07
£A	Diagram of different types of artery and vein	٥٣
	anastomosis	
£ 9	Cryo preserved vein and bovine mesenteric vein	٥٤
0.	Polyurethane graft	٥٤
01	Original Dacron and silicon coated Dacron grafts	00
04	original PTFE as shown by microscopic	٥٦
	examination	
س ه	ePTFE graft	٥٦
0 £	Thin walled ePTFE graft	٥٧
00	Hemasite PTFE graft	٥٨
07	Diastate PTFE graft	٥٨
OV	Carbon coated with tunneling sheath PTFE graft	٥٩
01	Venous cuffed PTFE graft	09
09	Diagram to show the technique of vascular	٦٣
	anastomosis	
7.	PTFE sheath show its compliance	٦٦
71	PTFE sheath show its porosity	77
7 7	Diagram of woven Dacron and knitted Dacron	٦٧
7 94	Diagram of composite graft	٦٨
	0	

7 £	Pannus ingrowth of PTFE graft at anastomosis site	79
70	New and old external reaction of PTFE graft	٦9
77	Ingrowth stages through pores of PTFE graft	٧.
71	Sequels of internal reaction to PTFE graft	٧.
71	RBCs entrapment and thrombosis in internal reaction to PTFE graft	٧١
79	Endothelial seeding of human PTFE graft	٧٢
V •	Picture of PTFE graft after puncture	٧٣
V 1	Picture of PTFE graft after puncture show loss of recoil of the wall	٧٤
V Y	Transposition of the basilic vein	Y Y
V #	Loop and straight axilloaxillary graft	Y Y
V£	Diagram of different types of upper limb grafts	٧٨
Vo	Diagram of different types of lower limb grafts	٧٩
V7	Diagram of rare types of grafts	٨٠
VV	Picture of pseudoaneurysm and its angiogram	٨٢
VA	Picture of graft infection with seroma along the tract	٨٤
V 9	Sinography pictures of graft infection with pus along the tract and at the anastomosis	۸۸
1.	Isotopic scan of graft infection in the arm along the tract and at the anastomosis	٨٨
11	Type I graft infection along the tract and at the anastomosis	۸۹
14	Type II graft infection	٩.
14	Type III graft infection treated by debridement	٩.
	and coverage	
N E	Finger gangrene secondary to steal phenomenon	98
10	Steal phenomenon angiogram show big difference after closure of the fistula	98
17	Different types of diameter reduction of the arterial anastomosis	9 £
AV	DRIL procedure for treatment of steal syndrome	90
11	Symptoms of venous hypertension	97
19	Venogram of venous hypertension	97
9.	Venous neck reconstruction for treatment of venous hypertension	97
91	Picture of one site itis complication	91
9 7	Bocket duplex set and diagram for graft surveillance	1.0
9 7	Diagram show how to test dynamic venous pressure	١٠٦
9 £	Pictures of jump graft and venous path for treatment of VNIH surgically	١٠٧

90	Angiography of VNIH and diagram of balloon dilatation	1.4
97	Picture of coated stent	1.9
9 1	Picture of intravascular radiation balloon	1.9
91	Microscopic picture show the effect of brachytherapy on SMC	11.
99	Microscopic picture show the effect of external beam radiation on NIH	111
1	Diagram of the process of gene therapy	111
1 . 1	Diagram of venous interposition cuffs	117
1.7	Diagram of difference between venous anastomosis of conventional and diffuser techniques	١١٣
1.5	Computed digital image of diffuser technique mechanical stress	115
1 . £	graft vein anastomosis in diffuser technique	112
1.0	diagram of venous anastomosis area in diffuser technique	177
1 . 7	graft preparation in diffuser technique	177
1.1	Cases of diffuser technique	175
1 • 1	Case 1: show a diffuser technique at the end of anastomosis	175
1 . 9	Case 7: another sample of diffuser technique	170
11.	Case ": diffuser technique	١٢٦
111	Picture to show the conventional technique of	177
	vascular anastomosis between the graft and vein	
117	Diagram of sex presentation in the study	179
9 9 90	Diagram of renal failure causes	179
112	Diagram of patient medical conditions	14.
110	Diagram show the distribution of grafts placement	177
117	Diagram of different group presentation	185
111	Diagram of causes of lost grafts	185
111	Diagram of treated cases	150
119	Diagram shows the ratio of postoperative	187
	complications	
17.	Diagram show the time of graft thrombosis	187
171	Diagram show the relations between death and graft patency	١٣٨
1 7 7	Diagram show life curve of the study	149
1 4 7	Diagram of 1st year patency	1 £ 1
1 7 £	Diagram of ⁷ nd year patency	1 £ 1
110	Curve shows the difference of thrombosis specific patency between diffuser and conventional anastomosis	1 £ £

List of tables

table		page
,	the distribution of catheter and operative scars	1 1 1
٢	shows the result of treated group	1 7 7
٣	show the fate and values of different complications	1 £ •
٤	shows the values of cumulative patency	1 £ ٢
0	shows the exact thrombosis related patency	1 2 14
7	show the results of log term patency	150

INTRODUCTION

The number of dialysis dependant patients with chronic renal failure is growing constantly. The discovery and evolution of hemodialysis techniques have prolonged and improved the quality of life of patients with chronic renal failure. Hemodialysis accesses are surgically created communications between the native artery and the vein in an extremity. The direct communications are called native arteriovenous fistula. Polytetrafloroethylene (PTFE), and other materials are termed prosthetic hemodialysis access (arteriovenous graft). The access that is created is routinely used for hemodialysis for Y-o times per week. Many patients who are not candidate for renal transplantation or those for whom a compatible donor cannot be secured are dependent on the hemodialysis for their lifetime. Preservation of patient's well functioning dialysis access is one of the most difficult clinical problems in long-term treatment of patients on dialysis. (Hakaim and Scott, 1997)

Historically native graft thrombectomy and revision resulting in the eventual exhaustion of the vein thus shortening its lifespan and the need to create a new access is mandatory. Less than 'o'.' of dialysis access remains patent and can functioning without problem during the entire life of patient. In best records fistula takes about 'years while PTFE graft lasts '-years before failure and thrombosis are noted. The problem after creation of arteriovenous graft results from progressive narrowing of the venous anastomosis which identified in more than 'y'.' of grafts, the primary underlying in outflow vein obstruction is pathophysiologic mechanism responsible for causing intimal hyperplasia at the anastomosis site. In 'Ah.'s percutaneous techniques such as balloon dilatation,

١

thrombolysis and mechanical thrombectomy allow the treatment of thrombosis and stenosis nonsurgically; but with high rate of recurrence and high cost. (Wijesinghe et al., 1991)

By using an in-vitro model of arteriovenous graft anastomosis at the venous site we noticed that, the traditional graft to vein anastomosis for arteriovenous grafts that created end to side fails because of myointimal hyperplasia at the anastomosis site. Rather than the conventional venous anastomosis we created a new modified end to side anastomosis. The modified end to side anastomosis (diffuser type) allows decreasing the flow velocity and increasing the pressure thus inhibiting the boundary layer separation. That is because diffusers are used to accommodate the mismatch between two dissimilar areas by interposing an approximately 17% increase in cross sectional area at the point of insertion. This method has a significant increase in patency of the prosthetic graft with no deaths, wound infections hemorrhagic complications. (Hakaim et al., "...")

Aim of the work

The aim of this work is to evaluate the technical feasibility, complications and long-term patency of the arteriovenous grafts using the new technique of flow diffuser between the brachial artery and the axillary vein for hemodialysis vascular access.