

Ain Shams University Institute of Environmental Studies And Research

# THE EFFECT OF USING BIODIESEL AS AIRCRAFT FUEL ON AIR QUALITY IN SOME EGYPTIAN AIRPORTS

By
Abdelrahman Mahmoud Raafat Hassan Zalat
B.Sc. Faculty of Science (Chemistry dept.), Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment of
The Requirement for the Master Degree in
Environmental Science

Environmental Basically Sciences Department Institute of Environmental Studies & research Ain Shams University

2016

# THE EFFECT OF USING BIODIESEL AS AIRCRAFT FUEL ON AIR QUALITY IN SOME EGYPTIAN AIRPORTS

### **Submitted By**

#### Abdelrahman Mahmoud Raafat Hassan Zalat

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 2005

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences

Has been Approved by:

Name Signature

## 1-Prof. Dr. El Sayed Mohamed El Sayed Mansour

Prof. of Organic and Polymers Chemistry Faculty of Science Alexandria University

#### 2-Dr. Mohamed Abd El Moneem Farouk

Head of Environmental Mangement Sector EEAA

## 3-Prof. Dr. Mahmoud Ibrahim Mahmoud Hewahy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies and Research Ain Shams University

2016

# THE EFFECT OF USING BIODIESEL AS AIRCRAFT FUEL ON AIR QUALITY IN SOME EGYPTIAN AIRPORTS

By

Abdelrahman Mahmoud Raafat Hassan Zalat B.Sc. Faculty of Science (Chemistry dept.), Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment of The Requirement for the Master Degree in Environmental Basically Sciences Department

#### **Under The Supervision of:**

- 1- Prof. Mahmoud Ahmed hewehy
  Prof. of Public Health
  Environmental Basically Sciences Dept.
  Institute of Environmental Studies and Research
- 2- Dr. Mohamed Mohamed Khalil El hakim International Expert on Committee of Aviation Environmental Protection ICAO, UN

2016

#### **ACKNOWLEDGMENT**

First praise is to Allah, the Almighty, on whom ultimately we depend for sustenance and guidance. Second, I would like to express my sincere gratitude to my supervisor **Prof. Mahmoud Ahmed hewehy** for the continuous support of my Master study, for his patience, motivation, and immense knowledge and the useful comments through the learning process of this master thesis. Furthermore I would like to thank **Dr. Mohamed Mohamed Khalil El hakim** for his guidance helped me in all the time of research and writing of this thesis, for the support on the way.

My sincere thanks also goes to **Eng. Hamdy Eid**, who provided me an opportunity to join this thesis, and who gave permit to use available data at my company and research facilities. Without they precious support it would not be possible to conduct this research.

Also, I like to thank my colleagues, who have willingly shared their precious experience and time during the process of collecting data of this thesis.

Last but not the least, I would like to thank my family: my parents, my brothers and sisters, and to my wife for supporting me spiritually throughout writing this thesis and my life in general.

#### **ABSTRACT**

The continuing increase in demand for commercial aviation transport raises questions about the effects of Biodiesel as an alternative fuel for aircraft on the airports environment. The purpose of this study is to compare, assumption of using Soy biodiesel (B<sub>20</sub>) as an Aircraft fuel on Sharm el-Sheikh International Airport's air quality vs. actual fuel used Diesel (Jet A1). The International Civil Aviation Organization (ICAO) defines standard power settings for jet engines at 7%, 30%, 85%, and 100% corresponding to the idle, approach, climb-out, and takeoff modes, respectively. These modes define the Landing and Takeoff (LTO) cycle developed as part of the jet engine certification process started in the 1970s. The results will only concentrate on the estimated emissions of from ground level to 9357ft (average mixing height layer). The estimated atmospheric emissions of aircraft operations at SSH for the year 2013 are presented in this paper. The landing and takeoff (LTO) emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO<sub>X</sub>), and particulate maters (PM), were calculated using the flight data recorded by the Egyptian airports company. Emission factors from the International Civil Aviation Organization Engine Exhaust Emission Databank were used for different aircraft operation modes such as take-off, climb-out, approach, and taxi/idle engine conditions. Total LTO emissions from aircrafts at SSH were estimated as 442.047 t /year for HC, 37660.742 t /year for CO, 69340.331 t/year for NO<sub>X</sub>, and 9.674 t/year for PM. The predicted total LTO emissions from aircrafts at SSH for the year 2050 were calculated as 4928.8241 t /year for HC, 419917.27 t /year for CO, 773144.69 t /year for NO<sub>X</sub>, and 107.8651 t /year for PM. The aircrafts at SSH are the major sources of NOx emissions (99.95%), Boeing 777 (large aircraft) has the biggest portions in NO<sub>x</sub> total emissions, in which contributing 6.836t /LTO for NO<sub>X</sub>.Flight numbers are expected to reach 483822 by 2050. That represents

5.42 % average annual growth in Flights at SSH. The emissions concentrations are normally well below the air quality limit values given in Law No. (4/2004) of Egypt and its amendment No. (9/2009), by the World Health Organization, and other different Countries guideline values. The assumption of use biodiesel (Soy biodiesel B<sub>20</sub>) for aircraft engines at SSH for year 2013 leads to the substantial reduction in PM, HC and CO emissions 0.987 t/year, 93.272 t/year, and 4142.682 t/year, respectively accompanying with the increase in NO<sub>x</sub> emission 1386.806 t/ year. Moreover, the prediction of reduction in emissions for year 2050 are estimated as 11.00505 t/year for PM, 1039.9828 t/ year for HC, and 46190.9043 t/year for CO, accompanying with the increase in NO<sub>x</sub> emission 15462.8869 t/year. There are very little effect on emissions reduction when using biodiesel (Soy biodiesel B<sub>20</sub>) for APU & aircraft handling comparing with aircraft main engines were estimated emissions reduction for APU during 2013 as 0.8023378 t/ year for HC, and 1.0155631 t/ year for CO, accompanying with the increase in NO<sub>x</sub> emission 0.2479944 t/year and for aircraft handling as 1.5077697 t/ year for HC, and 1.1828047 t/ year for CO, accompanying with the increase in NO<sub>x</sub> emission 0.6560550 t/ year. The measurement of average concentration of the regulated air emissions (HC, NO<sub>x</sub>, CO) at distance away 8 km from Runway were estimated for using Diesel (Jet A1) as 0.8281 ug/m<sup>3</sup> for HC. and 4.617 µg/m<sup>3</sup> for CO, and 343.7607 µg/m<sup>3</sup> for NO<sub>x</sub>, while for The assumption of use biodiesel (Soy biodiesel B<sub>20</sub>) for aircraft engines as 0.6534 µg/ m<sup>3</sup> for HC, and 4.1091 µg/ m<sup>3</sup> for CO, and  $350.6359 \,\mu g/m^3 \,for \,NO_x$ .

# **CONTENTS**

| Item NO.                         | Titles                                                                   | Page<br>NO. |
|----------------------------------|--------------------------------------------------------------------------|-------------|
| Chapter 1 "Introduction"         |                                                                          |             |
| 1.1                              | Aircraft and Airport air pollution                                       | 1           |
|                                  | emissions                                                                |             |
| 1.1.1                            | Operational LTO Cycle                                                    | 2           |
| 1.1.2                            | Aircraft emissions                                                       | 4           |
| 1.1.2 <b>.A</b>                  | Carbon Monoxide                                                          | 5           |
| 1.1.2 <b>.B</b>                  | Nitrogen Oxides                                                          | 6           |
| 1.1.2 <b>.C</b>                  | Unburned Hydrocarbons                                                    | 7           |
| 1.1.2 <b>.D</b>                  | Carbon Dioxide                                                           | 8           |
| 1.1.2 <b>.E</b>                  | Particulate Matter                                                       | 8           |
| 1.1.2 <b>.F</b>                  | Other Emissions                                                          | 10          |
| 1.2                              | History of alternative fuels in aviation                                 | 11          |
| 1.3                              | Air Quality Limit values for Egypt                                       | 14          |
| 1.4                              | Air quality regulations and pollutant in                                 | 15          |
|                                  | different countries                                                      |             |
| 1.5                              | Biodiesel Fuel                                                           | 17          |
| 1.5.1                            | Background of Biodiesel                                                  | 17          |
| 1.5.1 <b>.A</b>                  | Advantages of the Use of Biodiesel                                       | 18          |
| 1.5.1 <b>.B</b>                  | Disadvantages of the Use of Biodiesel                                    | 19          |
| 1.5.2                            | Raw Materials for Biodiesel Production                                   | 20          |
| Chapter 2 "Review of Literature" |                                                                          |             |
| 2.1                              | Background of Aviation                                                   | 22          |
| 2.2                              | Availability and usage of alternative fuels                              | 24          |
| 2.3                              | Cost of conversion and sustainability                                    | 27          |
| 2.4                              | Safety factors                                                           | 29          |
| 2.5                              | Research on Typical Biofuels as Aviation                                 | 30          |
|                                  | Alternative Fuel Purpose                                                 |             |
| 2.6                              | Real Flight Test Demonstration                                           | 35          |
| Chapter 3 " Biodiesel "          |                                                                          |             |
| 3.1                              | Benefits of Use                                                          | 36          |
| 3.1.1                            | Biodiesel Provides a High Energy Return and Displaces Imported Petroleum | 36          |

|                          | 4km, 5km, 6km, 7km, and 8km.                            |           |
|--------------------------|---------------------------------------------------------|-----------|
|                          | the following downwind: 1km, 2km, 3km,                  |           |
|                          | a fuel for aircraft types B737 & A320 at                |           |
|                          | assumption of using Soy biodiesel (B <sub>20</sub> ) as | 63        |
|                          | PM in the case of using Diesel &                        |           |
|                          | level concentration for NOx, HC, CO, and                |           |
| 4.4                      | Methodology for calculation of the Ground               |           |
|                          | concentration at ground level                           | 62        |
| 4.3                      | Methodology for calculation of pollutants               |           |
| 7.2                      | regression Model                                        | <b>62</b> |
| 4.2                      | Flights Forecasting using series Linear                 |           |
| 7.1.2                    | calculation methodology                                 | 61        |
| 4.1.1.A<br>4.1.2         | Auxiliary power –unit emissions                         | UU        |
| 4.1.1 <b>.A</b>          | engines advanced approach Time-in-mode calculation      | 60        |
| 4.1.1                    | Emission calculation for aircraft main                  | 59        |
| 4.1.1                    | engine/ APU emissions                                   |           |
| 4.1                      | Methodology for the estimation of aircraft              | 59        |
| " Materials and Methods" |                                                         |           |
| Chapter 4                |                                                         |           |
| 3.3.2                    | Low-Temperature Properties                              | 57        |
| 3.3.1 <b>.B</b>          | B <sub>6</sub> to B <sub>20</sub> Blends                | 55        |
| 3.3.1 <b>.A</b>          | B <sub>5</sub> and Lower Blends                         | 55        |
| 3.3.1                    | Specifications                                          | 55        |
| 3.3                      | Biodiesel Blends                                        | 54        |
| 3.2.4                    | Cetane Number                                           | 53        |
| 3.2.3                    | Low-Temperature Properties                              | 50        |
| 2.2.2                    | Energy Content                                          | 49        |
| 3.2.1                    | Quality Specification of B <sub>100</sub>               | 43        |
| 3.2                      | Biodiesel (B <sub>100</sub> )                           | 40        |
| 3.1.8                    | Storage Stability                                       | 39        |
| 3.1.7                    | Low-Temperature Operability                             | 39        |
| 3.1.6                    | Lower Energy Density                                    | 38        |
| 3.1.5                    | Biodiesel Is Easy To Use                                | 38        |
| 3.1.4                    | Biodiesel Improves Engine Operation                     | 37        |
| 3.1.3                    | Biodiesel and Human Health                              | 37        |
| J.1.2                    | Gas Emissions                                           | 36        |
| 3.1.2                    | Biodiesel Reduces Life-Cycle Greenhouse                 |           |

| 4.5                                                        | Methodology for calculation of Ground              |           |
|------------------------------------------------------------|----------------------------------------------------|-----------|
|                                                            | Service Equipment emissions by use                 | 64        |
|                                                            | Secondary simple approach method                   |           |
| 4.6                                                        | Methodology for measurements of Air                | 64        |
|                                                            | pollutions at SSH.                                 | 04        |
|                                                            | Chapter 5 "Results and Discussions"                |           |
| "Part 1:                                                   | <b>Evaluation of Air quality for Sharm El Shei</b> | kh        |
| Internatio                                                 | nal airport where diesel used as aircraft eng      | ines      |
|                                                            | fuel''                                             |           |
| 5.1                                                        | Sharm El Sheikh International Airport              | 65        |
| 5.1.1                                                      | Description of the environment                     | 65        |
| 5.1.1 <b>.A</b>                                            | Meteorology and Climate                            | 65        |
| 5.1.1 <b>.B</b>                                            | Geology and Topography                             | 67        |
| 5.1.1 <b>.C</b>                                            | Airport layout                                     | 67        |
| 5.1.1 <b>.D</b>                                            | Air traffic density                                | 69        |
| 5.1.2                                                      | Airport related emission sources                   | 76        |
| 5.1.2 <b>.A</b>                                            | Aircraft emissions                                 | 76        |
| 5.1.2 <b>.A.1</b>                                          | Aircraft main engines emissions                    | 77        |
| 5.1.2 <b>.A.1.1</b>                                        | Time-in-mode (TIM)                                 | <b>79</b> |
| 5.1.2 <b>.A.1.2</b>                                        | Emission index (EI) and fuel flow                  | 83        |
| 5.1.2 <b>.A.2</b>                                          | Calculation of Auxiliary power unit (APU)          | 144       |
|                                                            | emissions                                          |           |
| 5.1.2 <b>.B</b>                                            | Aircraft handling emissions                        | 193       |
| 5.1.2 <b>.B.1</b>                                          | Egyptair Ground Services company                   | 197       |
| 5.1.2 <b>.B.2</b>                                          | EAS Company                                        | 199       |
| 5.1.3                                                      | Concentrations downwind from the RWY               | 205       |
| 5.1.3 <b>.A</b>                                            | Average concentrations                             | 205       |
| 5.1.3 <b>.B</b>                                            | Peak hour concentrations from flight               | 216       |
|                                                            | activities                                         |           |
| 5.1.3.C                                                    | Estimated impact from road traffic                 | 219       |
|                                                            | Chapter 6 "Results and Discussions"                |           |
| "Part 2: Evaluation of Air quality for Sharm El-Sheikh     |                                                    |           |
| International airport by assuming replacement of diesel to |                                                    |           |
| biodiesel as an alternative fuel for aircraft engines"     |                                                    |           |
| 6.1                                                        | Comparison between emissions emitted from          | 222       |
|                                                            | biodiesel and diesel fuel                          |           |
| 6.2                                                        | Assumption effect of using soy-Biodiesel           | 223       |
|                                                            | $(B_{20})$ as a fuel for Aircraft engines          |           |

| (11             | 0 - D' 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                    | 222 |
|-----------------|---------------------------------------------------------------------------------|-----|
| 6.2.1           | Soy Biodiesel physic-chemical characteristics                                   | 223 |
| 6.2.2           | Total calculated emissions mass for landing                                     | 225 |
|                 | and takeoff cycle of aircraft different types on                                |     |
|                 | five days at SSH when assumption of using                                       |     |
|                 | Soy biodiesel (B <sub>20</sub> ) for Aircraft engines                           |     |
| 6.2.3           | Comparison between total calculated                                             | 230 |
|                 | emissions mass for landing and takeoff                                          |     |
|                 | cycle of aircraft different types on Five days                                  |     |
|                 | at SSH when using Diesel & assumption of                                        |     |
|                 | using Soy biodiesel (B <sub>20</sub> ) for Aircraft                             |     |
|                 | engines                                                                         |     |
| 6.2.4           | Comparison between total calculated                                             | 236 |
|                 | emissions mass for all Aircraft at SSH                                          |     |
|                 | during 2013 & 2050 when using Diesel &                                          |     |
|                 | assumption of using Soy biodiesel (B <sub>20</sub> ) for                        |     |
|                 | aircraft engines.                                                               |     |
| 6.2.5           | Calculation of the pollutants dispersion                                        | 240 |
| 0.20            | concentration of NOx, HC, CO, and PM                                            |     |
|                 | emitted from aircraft engines during take-                                      |     |
|                 | off operation to compare using of Soy                                           |     |
|                 | biodiesel (B <sub>20</sub> ) and Diesel as an aircraft fuel                     |     |
| 6.2.6           | Calculation of the Ground level                                                 | 249 |
| 0.2.0           | concentration for NOx, HC, CO, and PM in                                        | 272 |
|                 | the case of using Diesel & assumption of                                        |     |
|                 | using Soy biodiesel (B <sub>20</sub> ) as a fuel for aircraft types B737 & A320 |     |
| 6.2.6 <b>.A</b> | Calculation of the Ground level                                                 | 252 |
| 0.2.0.1         | concentration for NOx in the case of using                                      | 202 |
|                 | Diesel & assumption of using Soy biodiesel                                      |     |
|                 | $(B_{20})$ as a fuel for aircraft type B737                                     |     |
| 6.2.6 <b>.B</b> | Calculation of the Ground level                                                 | 256 |
| 0.2.0.0         | concentration for HC in the case of using                                       | 230 |
|                 | Diesel & assumption of using Soy biodiesel                                      |     |
|                 | 1                                                                               |     |
|                 | (B <sub>20</sub> ) as a fuel for aircraft type B737                             |     |

| 6.2.6 <b>.</b> C | Calculation of the Ground level                     | 260 |
|------------------|-----------------------------------------------------|-----|
|                  | concentration for CO in the case of using           |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | (B <sub>20</sub> ) as a fuel for aircraft type B737 |     |
| 6.2.6 <b>.D</b>  | Calculation of the Ground level                     | 64  |
|                  | concentration for PM in the case of using           |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | (B <sub>20</sub> ) as a fuel for aircraft type B737 |     |
| 6.2.6 <b>.E</b>  | Calculation of the Ground level                     | 272 |
|                  | concentration for NOx in the case of using          |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | $(B_{20})$ as a fuel for aircraft type A320         |     |
| 6.2.6 <b>.F</b>  | Calculation of the Ground level                     | 276 |
|                  | concentration for HC in the case of using           |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | (B <sub>20</sub> ) as a fuel for aircraft type A320 |     |
| 6.2.6 <b>.G</b>  | Calculation of the Ground level                     | 280 |
|                  | concentration for CO in the case of using           |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | (B <sub>20</sub> ) as a fuel for aircraft type A320 |     |
| 6.2.6 <b>.H</b>  | Calculation of the Ground level                     | 284 |
|                  | concentration for PM in the case of using           |     |
|                  | Diesel & assumption of using Soy biodiesel          |     |
|                  | (B <sub>20</sub> ) as a fuel for aircraft type A320 |     |
| CONCLUSION       |                                                     | 292 |
| RECOMMENDATIONS  |                                                     | 293 |
| SUMMARY          |                                                     | 294 |
| REFERENCE        |                                                     | 297 |
| ARABIC SUMMARY   |                                                     | 315 |
| <b>ARABIC A</b>  | BSTRUCT                                             | 318 |

# **LIST OF TABLES**

| Table NO.         | Title                                                                                                                          | Page<br>NO. |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table (1)         | Gas Turbine Exhaust Products.                                                                                                  | 4           |
| Table (2)         | Ambient Air Quality Limit values as given by Law no.4 for Egypt (1994).                                                        | 15          |
| Table (3)         | Local air quality regulations in different countries.                                                                          | 16          |
| Table (4)         | Select Properties of Typical No. Diesel and Biodiesel Fuels.                                                                   | 42          |
| Table (5)         | Requirements for Biodiesel (B <sub>100</sub> ) Blend<br>Stock as Listed in ASTM D6751.                                         | 43          |
| Table (6)         | Heating value of Diesel and Some Biodiesel Fuels.                                                                              | 50          |
| Table (7)         | Cold Flow Data for Various B <sub>100</sub> Fuels.                                                                             | 52          |
| Table (8)         | ASTM D7467 Specification for Diesel Blends B <sub>6</sub> to B <sub>20</sub> .                                                 | 56          |
| Table (9)         | European emission factors for aircraft handling                                                                                | 64          |
| <b>Table (10)</b> | Climate data for Sharm El Sheikh.                                                                                              | 66          |
| <b>Table</b> (11) | Annual distribution of Flights and passengers at Sharm El-Sheikh International airport in 2013, Arrivals and Departures added. | 70          |
| <b>Table (12)</b> | Different types of aircrafts used SSH during 2013.                                                                             | 72          |
| <b>Table (13)</b> | Number of Flights forecasted for Sharm El-<br>Sheikh International airport based on series<br>linear regression Model.         | 75          |
| <b>Table</b> (14) | Time-In-Mode (min.) of different operating phases for Turboprop aircraft according to Landing and Take-off Path at SSH.        | 81          |
| <b>Table</b> (15) | Time-In-Mode (min.) of different operating phases for Regional Jet aircraft according to Landing and Take-off Path at SSH.     | 81          |
| <b>Table (16)</b> | Time-In-Mode (min.) of different operating phases for Narrow-Body Jet aircraft according to Landing and Take-off Path at SSH.  | 82          |

|                   | T                                                                                                                                                                            |    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Table (17)</b> | Time-In-Mode (min.) of different operating phases for Wide -Body Jet aircraft according to Landing and Take-off Path at SSH                                                  | 82 |
| <b>Table (18)</b> | Emissions Index of different operating phases for one engine of A319.                                                                                                        | 84 |
| <b>Table (19)</b> | Total Emissions, Total fuel flow, and time-<br>In-Mode of different operating phases for<br>one engine of A319 at Sharm El-Sheikh<br>International airport                   | 85 |
| Table (20)        | Emissions Index of different operating phases for one engine of A321.                                                                                                        | 86 |
| <b>Table (21)</b> | Total Emissions, Total fuel flow, and time-<br>In-Mode of different operating phases for<br>one engine of A321 at Sharm El-Sheikh<br>International airport.                  | 87 |
| <b>Table (22)</b> | Emissions Index of different operating phases for one engine of A330.                                                                                                        | 88 |
| <b>Table (23)</b> | Total Emissions, Total fuel flow, and time-<br>In-Mode of different operating phases for<br>one engine of A330 at Sharm El-Sheikh<br>International airport.                  | 89 |
| Table (24)        | Emissions Index of different operating phases for one engine of A320.                                                                                                        | 90 |
| <b>Table (25)</b> | Total Emissions, Total fuel flow, and time-<br>In-Mode of different operating phases for<br>one engine of A320 at Sharm El-Sheikh<br>International airport.                  | 91 |
| <b>Table (26)</b> | Emissions Index of different operating phases for one engine of Avro RJ100 (BAe Avro 146-RJ100).                                                                             | 92 |
| <b>Table (27)</b> | Total Emissions, Total fuel flow, and time-In-Mode of different operating phases for one engine of Avro RJ100 (BAe Avro 146-RJ100) at Sharm El-Sheikh International airport. | 93 |

|                   | T                                                              | 1   |
|-------------------|----------------------------------------------------------------|-----|
| <b>Table (28)</b> | Emissions Index of different operating                         | 94  |
|                   | phases for one engine of B733.                                 |     |
| <b>Table (29)</b> | Total Emissions, Total fuel flow, and time-                    |     |
|                   | In-Mode of different operating phases for                      | 95  |
|                   | one engine of B733 at Sharm El-Sheikh                          |     |
|                   | International airport.                                         |     |
| <b>Table (30)</b> | Emissions Index of different operating                         | 96  |
|                   | phases for one engine of B734.                                 | 70  |
|                   | Total Emissions, Total fuel flow, and time-                    |     |
| Table (31)        | In-Mode of different operating phases for                      | 97  |
| 1 able (31)       | one engine of B734 at Sharm El-Sheikh                          | 91  |
|                   | International airport.                                         |     |
| T-1-1- (22)       | Emissions Index of different operating                         | 0.0 |
| <b>Table (32)</b> | phases for one engine of B742.                                 | 98  |
|                   | Total Emissions, Total fuel flow, and time-                    |     |
| E 11 (22)         | In-Mode of different operating phases for                      | 00  |
| <b>Table (33)</b> | one engine of B742 at Sharm El-Sheikh                          | 99  |
|                   | International airport.                                         |     |
|                   | Emissions Index of different operating                         | 100 |
| <b>Table (34)</b> | phases for one engine of B747.                                 | 100 |
|                   | Total Emissions, Total fuel flow, and time-                    |     |
|                   | In-Mode of different operating phases for                      |     |
| <b>Table (35)</b> | one engine of B747 at Sharm El-Sheikh                          | 101 |
|                   | International airport.                                         |     |
|                   | Emissions Index of different operating                         |     |
| <b>Table (36)</b> | phases for one engine of B752.                                 | 102 |
|                   | Total Emissions, Total fuel flow, and time-                    |     |
|                   | In-Mode of different operating phases for                      |     |
| <b>Table (37)</b> | one engine of B752 at Sharm El-Sheikh                          | 103 |
|                   | 1                                                              |     |
|                   | International airport.  Emissions Index of different operating |     |
| <b>Table (38)</b> | 1                                                              | 104 |
|                   | phases for one engine of B757.                                 |     |
| <b>Table (39)</b> | Total Emissions, Total fuel flow, and time-                    |     |
|                   | In-Mode of different operating phases for                      | 105 |
|                   | one engine of B757 at Sharm El-Sheikh                          |     |
|                   | International airport.                                         |     |
| <b>Table (40)</b> | Emissions Index of different operating                         | 106 |
|                   | phases for one engine of B767.                                 |     |

|                   | Total Emissions, Total fuel flow, and time-                  |     |
|-------------------|--------------------------------------------------------------|-----|
| <b>Table (41)</b> | In-Mode of different operating phases for                    | 107 |
|                   | one engine of B767 at Sharm El-Sheikh                        | 107 |
|                   | International airport.                                       |     |
| <b>Table (42)</b> | Emissions Index of different operating                       | 108 |
|                   | phases for one engine of B777.                               |     |
|                   | Total Emissions, Total fuel flow, and time-                  |     |
| <b>Table (43)</b> | In-Mode of different operating phases for                    | 109 |
|                   | one engine of B777 at Sharm El-Sheikh International airport. |     |
|                   | Emissions Index of different operating                       |     |
| <b>Table (44)</b> | phases for one engine of B737.                               | 110 |
|                   | Total Emissions, Total fuel flow, and time-                  |     |
|                   | In-Mode of different operating phases for                    |     |
| <b>Table (45)</b> | one engine of B737 at Sharm El-Sheikh                        | 111 |
|                   | International airport.                                       |     |
|                   | Emissions Index of different operating                       |     |
| <b>Table (46)</b> | phases for one engine of B738.                               | 112 |
|                   | Total Emissions, Total fuel flow, and time-                  |     |
| T-1-1- (47)       | In-Mode of different operating phases for                    | 112 |
| <b>Table (47)</b> | one engine of B738 at Sharm El-Sheikh                        | 113 |
|                   | International airport.                                       |     |
| <b>Table (48)</b> | Emissions Index of different operating phase                 | 114 |
| 1 abie (40)       | for one engine of BAe 146-200 (QT).                          | 117 |
|                   | Total Emissions, Total fuel flow, and time-                  |     |
| <b>Table (49)</b> | In-Mode of different operating phases for                    | 115 |
| Tuble (45)        | one engine of BAe 146-200 (QT) at Sharm                      | 115 |
|                   | El-Sheikh International airport.                             |     |
|                   | Emissions Index of different operating                       |     |
| <b>Table (50)</b> | phases for one engine of Bombardier                          | 116 |
| , ,               | Challenger 300 (BD-100-1A10).                                |     |
|                   | Total Emissions, Total fuel flow, and time-                  |     |
|                   | In-Mode of different operating phases for                    |     |
| <b>Table (51)</b> | one engine of Bombardier Challenger 300                      | 44- |
|                   | (BD-100-1A10) at Sharm El-Sheikh                             | 117 |
|                   | International airport.                                       |     |
|                   | _                                                            |     |