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In the present thesis, Chapter 1 is an introduction to the propulsive wing and
literature review of related work done in this field. In Chapter 2 the numerical model
and method of calculation and the grid sensitivity analysis is presented. In Chapter 3 the
results is shown. In Chapter 4 the conclusion is discussed.

The propulsive wing is examined numerically to determine the benefit and efficiency of
a new proposed propulsive device. In the propulsive wing concept, the fan is embedded
inside the wing section and the out flow jet blows over the wing. This pushes the
aerodynamic envelope of the wing by avoiding stall up to 45° and hence maintain very
high lift coefficient. The numerical model is first compared with published
experimental data. The comparison shows that the K-& model is the optimum model for
the numerical calculation; a sensitivity study is then performed to determine the flight
operating points of the propulsive wing based on the numerical values for the net thrust
force. The numerical results show that the operating speed of the propulsive wing
increases from 3.4 to 13.5 m/s as the RPM throttle setting increases from 1020 to 4200 RPM.
The lift can be high as 23 N for o = 30° which is not attainable with conventional wings. The
airstream operating velocity (velocity required to get almost zero net thrust, is
proportional to the fan speed at the same angle of attack, while it is proportional
inversely with the RPM at different angles of attack; at 4200 RPM, the velocity is 21.6
m/s at (a=0°) while it decreases to 13.5 m/s at (x=30°).The relation between Lift and
the fan RPM’s is progressively proportioned, the lift increases with RPMs in same
angle of attack, and also it increases with angles of attack for same RPM.
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NOMENCLATURE

Symbol Nomenclature Unit

r Fluid density Kg/m®
\ Air stream relative velocity m/s

P Static pressure N/m?

u X-components of velocity vector m/s

v y-components of velocity vector m/s

T Shear stress N/m?
W The input power of the fan measured in Watt

watts
Kk The turbulence kinetic energy N.m
o 'il('_he rate of dissipation for the turbulence I(kg.s)=m?s’
inetic energy

S Wing span m

c Airfoil chord m

L Lift force N

T Thrust force N

m viscosity _ .
m The turbulent (eddy) viscosity Pa.s=(N.s)/m=kg/(s.m)
VX Air stream relative velocity in x-direction m/s
Vy Air stream relative velocity in y-direction m/s
Fx Resultant force in x-direction N

Fy Resultant force in y-direction N

o Angle of attack Degree (°)
N Fan rotation RPM
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ABSTRACT

In the present thesis, the propulsive wing is examined numerically to determine
the benefit and efficiency of a new proposed propulsive device. In the propulsive wing
concept, the fan is embedded inside the wing section and the outflow jet blows over the
wing. This pushes the aerodynamic envelope of the wing by avoiding stall up to 45°and
hence maintain very high lift coefficient.

The numerical model is first compared with published experimental data. The
comparison shows that the K-e&¢ model is the optimum model for the numerical
calculation; a sensitivity study is then performed to determine the flight operating points
of the propulsive wing based on the numerical values for the net thrust force.

The numerical results show that the operating speed of the propulsive wing increases
from 3.4 to 13.5 m/s as the RPM throttle setting increases from 1020 to 4200 RPM. The lift can
be high as 23 N for a. = 30°, which is not attainable with conventional wings.

The airstream operating velocity (velocity required to get almost zero net thrust, is
proportional to the fan speed at the same angle of attack, while it is proportional
inversely with the RPM at different angles of attack; at 4200 RPM, the velocity is
21.6 m/s at (a=0°) while it decreases to 13.5 m/s at (a=30°).

The lift is found to also increase as the RPM increases at the same angle of attack. Since
it is possible to delay stall, the lift increases as the angle of attack is increased as long as
the RPM is sufficiently high to keep the flow attached on the upper surface.
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CHAPTER 1: INTRODUCTION AND LITERATURE
REVIEW

Moving an airfoil (wing) relative to the air produces aerodynamic forces of drag
and lift. The thrust force is created by a propeller or a jet engine. There are three
vectors representing the aerodynamic forces on a powered airplane: lift, drag and thrust.
The other force acting on an aircraft during flight is the weight force.

DRAG

os
l WEIGHT

Figurel : Forcesacting on airplane[1]

In convential airfoil or wing, lift is generated by static pressure difference between
upper and lower surface of the wing as shown in Fig. 2.

fm High dynamic pressure
Low static pressure

L —

Low dynamic pressure
High static pressure

Figure2 : Lift generation on wing [2]

There are general methods that aim to accelerate the air stream over the upper surface
of the wing such as increasing the angle of attack or increasing camber of wing as
shown in Fig. 3.
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Figure 3 : A schematic of typical airfail [3]

For the propulsive wing, an embedded radial fan at the leading edge of wing (with its
axis parallel to the leading edge) permits blowing of the air towards the trailing edge.
Lift is generated from two sources; the circulation at the fan which pulls the air stream
from leading edge toward the trailing edge of the wing with airflow adjacent to the
upper surface of the wing which increases dynamic pressure and decreases static
pressure on the upper surface of the wing. There is no influence from fan circulation on
the bottom surface of the wing. The second source of lift is the vertical component of
the reaction force on the wing resulting from the inclined velocity vector of the exiting
airstream flow at the trailing edge. The horizontal component of the reaction force on
the wing represents the thrust force, this results in a direct proportional relation
between the speed of rotation of the fan (or throttle setting) and the lift acting on the
wing, which is a feature rarely found in fixed wing aircraft as shown in Fig.4.
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%_ i/ \jj N . Momentum out
N el N = lift and thrust
\Ks&& | }// %

</

Figure4 : Schematic of propulsive wing cross section [4]

The concept of the propulsion wing is classified as one of the techniques of the
embedded distributed systems. A full investigation by (Kim, 2010) [5] shows:

o Jet flaps (blowing engine exhaust out of the wing trailing edge).
e Cross-flow fan (two dimensional propulsor integrated within the wing
trailing edge).



e Multiple discrete gas turbine engines (driven by their own power
source).

e Distributed multi-fans driven by a limited number of gas turbine engine
cores; which can be driven by conventional or electrical motors.

An investigation to study the advantages of distributed propulsion for future aircraft
concepts was evaluated for six different integration approaches in order to down-select
the best configuration as shown in Table 1 (Steiner, 2012) [6] . Categories included the
integration of power system, the aspects of operation, weight, noise and efficiency. The
evaluation is based on the boundary layer ingestion, which has the ability to increase
aircraft efficiency by increasing the propulsive efficiency of the fans and shifting the
optimum fan pressure ratio to higher values, hence permitting the use of a smaller
propulsor size, which results in lower weight and drag of the propulsion system. The
results show that the CROSS configuration is the best case and gives the highest
efficiency for all embedded distributed systems.

Tablel : Distributed propulsion concepts [6]

Concept Description and Abbreviation

Aft-mounted fans covering the upper part of a
cylindrical fuselage (REVOLVE)

Blended Wing Bodies (BWB) with embedded fans on
top of the lifting body trailing edge (BWB)

Tube and wing configuration with fans integrated within
a split-wing (SPLIT)

Tube and wing concept with fans mounted on the upper
wing side (WING)

Cylindrical fuselage with circumferential fan at the aft
section (PROPFUS)

Cross-flow fan embedded into the trailing edge of the
wing (CROSS)

An analysis of propulsive wing configurations according to the potentials of cross-flow
fan for the application to commercial aircraft featuring extreme short takeoff and
landing capabilities has been done by evaluating the kinematic mechanisms for three
cross-flow fan propulsive airfoil concept solutions with a preliminary assessment
enabling a low-speed operation as well as high-speed operation mode as shown in
Fig.5. By using a thin supercritical airfoil in performing a two-dimensional simulation
for concept (2) at a free stream velocity of 35 m/s for 15° angle of attack and a 12,000
RPM fan rotational speed, representing a potential take-off condition, the lift coefficient

3



